Log in

Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nargenicin A1, an antibacterial produced by Nocardia sp. CS682 (KCTC 11297BP), demonstrates effective activity against various Gram-positive bacteria. Hence, we attempted to enhance nargenicin A1 production by utilizing the cumulative effect of synthetic biology, metabolic engineering and statistical media optimization strategies. To facilitate the modular assembly of multiple genes for genetic engineering in Nocardia sp. CS682, we constructed a set of multi-monocistronic vectors, pNV18L1 and pNV18L2 containing hybrid promoter (derived from ermE* and promoter region of neo r ), ribosome binding sites (RBS), and restriction sites for cloning, so that each cloned gene was under its own promoter and RBS. The multi-monocistronic vector, pNV18L2 containing transcriptional terminator showed better efficiency in reporter gene assay. Thus, multiple genes involved in the biogenesis of pyrrole moiety (ngnN2, ngnN3, ngnN4, and ngnN5 from Nocardia sp. CS682), glucose utilization (glf and glk from Zymomonas mobilis), and malonyl-CoA synthesis (accA2 and accBE from Streptomyces coelicolor A3 (2)), were cloned in pNV18L2. Further statistical optimization of specific precursors (proline and glucose) and their feeding time led to ~84.9 mg/L nargenicin from Nocardia sp. GAP, which is ~24-fold higher than Nocardia sp. CS682 (without feeding). Furthermore, pikC from Streptomyces venezuelae was expressed to generate Nocardia sp. PikC. Nargenicin A1 acid was characterized as novel derivative of nargenicin A1 produced from Nocardia sp. PikC by mass spectrometry (MS) and nuclear magnetic resonance (NMR) analyses. We also performed comparative analysis of the anticancer and antibacterial activities of nargenicin A1 and nargenicin A1 acid, which showed a reduction in antibacterial potential for nargenicin A1 acid. Thus, the development of an efficient synthetic biological platform provided new avenues for enhancing or structurally diversifying nargenicin A1 by means of pathway designing and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2014R1A2A2A01002875).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All the authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhakal, D., Chaudhary, A.K., Yi, J.S. et al. Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform. Appl Microbiol Biotechnol 100, 9917–9931 (2016). https://doi.org/10.1007/s00253-016-7705-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7705-3

Keywords

Navigation