Log in

Characterization of the sugar-O-methyltransferase LobS1 in lobophorin biosynthesis

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lobophorins A (1) and B (2) belong to a large group of spirotetronate natural products with potent antibacterial and antitumor activities. The cloning of the lobophorin biosynthesis gene cluster from the deep-sea-derived Streptomyces sp. SCSIO 01127 identified a sugar-O-methyltransferase-encoding gene lobS1. The lobS1 inactivation mutant accumulated two new lobophorin analogs 3 and 4, different from 1 and 2 by lacking the 4-methyl group at the terminal l-digitoxose, respectively. Biochemical experiments verified that LobS1 was a SAM-dependent sugar-O-methyltransferase that required divalent metal ions for better activity. Antibacterial assays revealed compounds 3 and 4 were generally less potent than compounds 1 and 2. These findings suggest that the methylation on the terminal digitoxose by LobS1 tailors lobophorin biosynthesis and highlights the importance of this methylation for antibacterial potence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashton RJ, Kenig MD, Luk K, Planterose DN, Scott-Wood G (1990) MM 46115, a new antiviral antibiotic from Actinomadura pelletieri. Characteristics of the producing cultures, fermentation, isolation, physico-chemical and biological properties. J Antibiot 43:1387–1393

    Article  PubMed  CAS  Google Scholar 

  • Bauer NJ, Kreuzman AJ, Dotzlaf JE, Yeh WK (1988) Purification, characterization, and kinetic mechanism of S-adenosyl-L-methionine:macrocin O-methyltransferase from Streptomyces fradiae. J Biol Chem 263:15619–15625

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Wang J, Guo H, Hou W, Yang N, Ren B, Liu M, Dai H, Liu X, Song F, Zhang L (2013) Three antimycobacterial metabolites identified from a marine-derived Streptomyces sp. MS100061. Appl Microbiol Biotechnol 97:3885–3892

    Article  PubMed  CAS  Google Scholar 

  • Chi X, Baba S, Tibrewal N, Funabashi M, Nonaka K, Van Lanen SG (2013) The muraminomicin biosynthetic gene cluster and enzymatic formation of the 2-deoxyaminoribosyl appendage. Med Chem Commun 4:239–243

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Ding W, Lei C, He Q, Zhang Q, Bi Y, Liu W (2010) Insights into bacterial 6-methylsalicylic acid synthase and its engineering to orsellinic acid synthase for spirotetronate generation. Chem Biol 17:495–503

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Zhang Y, Huang L, Jia X, Zhang Q, Zhang X, Tang G, Liu W (2008) Cloning and characterization of the tetrocarcin A gene cluster from Micromonospora chalcea NRRL 11289 reveals a highly conserved strategy for tetronate biosynthesis in spirotetronate antibiotics. J Bacteriol 190:6014–6025

    Article  PubMed  CAS  Google Scholar 

  • Fouces R, Mellado E, Diez B, Barredo JL (1999) The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology 145:855–868

    Google Scholar 

  • Funabashi M, Baba S, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, Van Lanen SG (2010) The biosynthesis of liposidomycin-like A-90289 antibiotics featuring a new type of sulfotransferase. ChemBioChem 11:184–190

    Article  PubMed  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci 100:1541–1546

    Article  PubMed  CAS  Google Scholar 

  • He HY, Pan HX, Wu LF, Zhang BB, Chai HB, Liu W, Tang GL (2012) Quartromicin biosynthesis: two alternative polyketide chains produced by one polyketide synthase assembly line. Chem Biol 19:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Igarashi Y, Ogura H, Furihata K, Oku N, Indananda C, Thamchaipenet A (2011) Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp. J Nat Prod 74:670–674

    Article  PubMed  CAS  Google Scholar 

  • Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K, Miyanouchi K (2012) Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot 65:355–359

    Article  PubMed  CAS  Google Scholar 

  • Jia XY, Tian ZH, Shao L, Qu XD, Zhao QF, Tang J, Tang GL, Liu W (2006) Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem Biol 13:575–585

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZD, Jensen PR, Fenical W (1999) Lobophorins A and B, new antiinflammatory macrolides produced by a tropical marine bacterium. Bioorg Med Chem Lett 9:2003–2006

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M, Nakashima T, Uosaki Y, Hara M, Ikeda S, Kanda Y (2001) Synthesis of tetrocarcin derivatives with specific inhibitory activity towards Bcl-2 functions. Bioorg Med Chem Lett 11:887–890

    Article  PubMed  CAS  Google Scholar 

  • Kawashima A, Nakamura Y, Ohta Y, Akama T, Yamagishi M, Hanada K (1992) New cholesterol biosynthesis inhibitors MC-031 (O-demethylchlorothricin), −032 (O-demethylhydroxychlorothricin), −033 and −034. J Antibiot 45:207–212

    Article  PubMed  CAS  Google Scholar 

  • Kaysser L, Lutsch L, Siebenberg S, Wemakor E, Kammerer B, Gust B (2009) Identification and manipulation of the caprazamycin gene cluster lead to new simplified liponucleoside antibiotics and give insights into the biosynthetic pathway. J Biol Chem 284:14987–14996

    Article  PubMed  CAS  Google Scholar 

  • Keller-Schierlein W, Muntwyler R, Pache W, Zähner H (1969) Metabolic products of microorganisms. Chlorothricin and deschlorothricin. Helv Chim Acta 52:127–142

    Article  CAS  Google Scholar 

  • Kreuzman AJ, Turner JR, Yeh WK (1988) Two distinctive O-methyltransferases catalyzing penultimate and terminal reactions of macrolide antibiotic (tylosin) biosynthesis. Substrate specificity, enzyme inhibition, and kinetic mechanism. J Biol Chem 263:15626–15633

    PubMed  CAS  Google Scholar 

  • Li S, Anzai Y, Kinoshita K, Kato F, Sherman DH (2009) Functional analysis of MycE and MycF, two O-methyltransferases involved in the biosynthesis of mycinamicin macrolide antibiotics. ChemBioChem 10:1297–1301

    Article  PubMed  CAS  Google Scholar 

  • Li S, **ao J, Zhu Y, Zhang G, Yang C, Zhang H, Ma L, Zhang C (2013) Dissecting glycosylation steps in lobophorin biosynthesis implies an iterative glycosyltransferase. Org Lett 15:1374–1377

    Article  PubMed  CAS  Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  PubMed  CAS  Google Scholar 

  • Mallams AK, Puar MS, Rossman RR, McPhail AT, Macfarlane RD (1981) Kijanimicin. 2. Structure and absolute stereochemistry of kijanimicin. J Am Chem Soc 103:3940–3943

    Article  CAS  Google Scholar 

  • Mazzetti C, Ornaghi M, Gaspari E, Parapini S, Maffioli S, Sosio M, Donadio S (2012) Halogenated spirotetronates from actinoallomurus. J Nat Prod 75:1044–1050

    Article  PubMed  CAS  Google Scholar 

  • Morimoto M, Fukui M, Ohkubo S, Tamaoki T, Tomita F (1982) Tetrocarcins, new antitumor antibiotics. 3. Antitumor activity of tetrocarcin A. J Antibiot 35:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Nakashima T, Miura M, Hara M (2000) Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res 60:1229–1235

    PubMed  CAS  Google Scholar 

  • Niu S, Hu T, Li S, **ao Y, Ma L, Zhang G, Zhang H, Yang X, Ju J, Zhang C (2011a) Characterization of a sugar-O-methyltransferase TiaS5 affords new tiacumicin analogues with improved antibacterial properties and reveals substrate promiscuity. ChemBioChem 12:1740–1748

    Article  PubMed  CAS  Google Scholar 

  • Niu S, Li S, Chen Y, Tian X, Zhang H, Zhang G, Zhang W, Yang X, Zhang S, Ju J, Zhang C (2011b) Lobophorins E and F, new spirotetranate antibiotics from a South China Sea-derived Streptomyces sp. SCSIO 01127. J Antibiot 64:711–716

    Article  PubMed  CAS  Google Scholar 

  • Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ (1999) Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:204–211

    PubMed  CAS  Google Scholar 

  • Park HR, Furihata K, Hayakawa Y, Shin-ya K (2002) Versipelostatin, a novel GRP78/Bip molecular chaperone down-regulator of microbial origin. Tetrahedron Lett 43:6941–6945

    Article  CAS  Google Scholar 

  • Roush WR, Sciotti RJ (1994) Enantioselective total synthesis of (−)-chlorothricolide. J Am Chem Soc 116:6457–6458

    Article  CAS  Google Scholar 

  • Roush WR, Sciotti RJ (1998) Enantioselective total synthesis of (−)-chlorothricolide via the tandem inter and intramolecular Diels-Alder reaction of a hexaenoate intermediate. J Am Chem Soc 120:7411–7419

    Article  CAS  Google Scholar 

  • Roush WR, Reilly ML, Koyama K, Brown BB (1997) A formal total synthesis of (+)-tetronolide, the aglycon of the tetrocarcins: enantio and diastereoselective syntheses of the octahydronaphthalene (bottom half) and spirotetronate (top half) fragments. J Org Chem 62:8708–8721

    Article  CAS  Google Scholar 

  • Shao L, Qu XD, Jia XY, Zhao QF, Tian ZH, Wang M, Tang GL, Liu W (2006) Cloning and characterization of a bacterial iterative type I polyketide synthase gene encoding the 6-methylsalicyclic acid synthase. Biochem Biophys Res Commun 345:133–139

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Kawanishi E, Nakamura H, Yoshii E (1991) Total synthesis of tetronolide, the aglycon of tetrocarcins. Tetrahedron Lett 32:4925–4928

    Article  CAS  Google Scholar 

  • Tomita F, Tamaoki T, Shirahata K, Kasai M, Morimoto M, Ohkubo S, Mineura K, Ishii S (1980) Novel antitumor antibiotics, tetrocarcins. J Antibiot 33:668–670

    Article  PubMed  CAS  Google Scholar 

  • Tsunakawa M, Tenmyo O, Tomita K, Naruse N, Kotake C, Miyaki T, Konishi M, Oki T (1992) Quartromicin, a complex of novel antiviral antibiotics. I. Production, isolation, physico-chemical properties and antiviral activity. J Antibiot 45:180–188

    Article  PubMed  CAS  Google Scholar 

  • Wei RB, ** T, Li J, Wang P, Li FC, Cheng LY, Qin S (2011) Lobophorin C and D, new kijanimicin derivatives from a marine sponge-associated actinomycetal strain AZS17. Mar Drugs 9:359–368

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Wu Z, Qu X, Liu W (2012) Insights into pyrroindomycin biosynthesis reveal a uniform paradigm for tetramate/tetronate formation. J Am Chem Soc 134:17342–17345

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Albermann C, Fu X, Peters NR, Chisholm JD, Zhang G, Gilbert EJ, Wang PG, Van Vranken DL, Thorson JS (2006) RebG- and RebM-catalyzed indolocarbazole diversification. ChemBioChem 7:795–804

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, White-Phillip JA, Melancon CE 3rd, Kwon HJ, Yu WL, Liu HW (2007) Elucidation of the kijanimicin gene cluster: insights into the biosynthesis of spirotetronate antibiotics and nitrosugars. J Am Chem Soc 129:14670–14683

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from the National Science Foundation of China (31125001), the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (KZCX2-YW-JC202, KSCX2-EW-G-12), and the funds from Ministry of Science and Technology of China (2010CB833805 and 2012AA092104). C. Z. is a scholar of the “100 Talents Project” of Chinese Academy of Sciences (08SL111002). We are grateful to the analytical facility of South China Sea Institute of Oceanology for recording NMR data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 489 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

**ao, J., Zhang, Q., Zhu, Y. et al. Characterization of the sugar-O-methyltransferase LobS1 in lobophorin biosynthesis. Appl Microbiol Biotechnol 97, 9043–9053 (2013). https://doi.org/10.1007/s00253-013-5083-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5083-7

Keywords

Navigation