Log in

Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A model azo dye, methyl orange (MO), was reduced through in situ utilization of the electrons derived from the anaerobic conversion of organics in a microbial fuel cell (MFC). The MO reduction process could be described by a pseudo first-order kinetic model with a rate constant of 1.29 day−1. Electrochemical impedance spectroscopic analysis shows that the cathode had a high polarization resistance, which could decrease the reaction rate and limit the electron transfer. To improve the MO reduction efficiency, the cathode was modified with redox mediators to enhance the electron transfer. After modification with thionine, the polarization resistance significantly decreased by over 50%. As a consequence, the MO decolorization rate increased by over 20%, and the power density was enhanced by over three times. Compared with thionine, anthraquinone-2, 6-disulfonate modified cathode has less positive effect on the MFC performance. These results indicate that the electrode modification with thionine is a useful approach to accelerate the electrochemical reactions. This work provides useful information about the key factors limiting the azo dye reduction in the MFC and how to improve such a process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adachi M, Shimomura T, Komatsu M, Yakuwa H, Miya A (2008) A novel mediator-polymer-modified anode for microbial fuel cells. Chem Commun 7:2055–2057

    Article  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Cao J, Wei L, Huang Q, Wang L, Han S (1999) Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38:565–571

    Article  CAS  Google Scholar 

  • Chen YP, Liu SY, Yu HQ, Yin H, Li QL (2008) Radiation-induced degradation of methyl orange in aqueous solutions. Chemosphere 72:532–536

    Article  CAS  Google Scholar 

  • Cheng SA, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    Article  CAS  Google Scholar 

  • Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569

    Article  CAS  Google Scholar 

  • Feng CH, Li FB, Mai HJ, Li XZ (2010a) Bio-electro-fenton process driven by microbial fuel cell for wastewater treatment. Environ Sci Technol 44:1875–1880

    Article  CAS  Google Scholar 

  • Feng CH, Ma L, Li FB, Mai HJ, Lang XM, Fan SS (2010b) A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens Bioelectron 25:1516–1520

    Article  CAS  Google Scholar 

  • Field JA, Stams AJM, Kato M, Schraa G (1995) Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie Leeuwenhoek 67:47–77

    Article  CAS  Google Scholar 

  • Ghica ME, Brett CMA (2005) A glucose biosensor using methyl viologen redox mediator on carbon film electrodes. Anal Chim Acta 532:145–151

    Article  CAS  Google Scholar 

  • Hamelers HVM, Ter Heijne A, Sleutels THJA, Jeremiasse AW, Strik DPBTB, Buisman CJN (2010) New applications and performance of bioelectrochemical systems. Appl Microbiol Biotechnol 85:1673–1685

    Article  CAS  Google Scholar 

  • Hastie J, Bejan D, Teutli-León M, Bunce NJ (2006) Electrochemical methods for degradation of orange II (sodium 4-(2-hydroxy-1-naphthylazo) benzenesulfonate). Ind Eng Chem Res 45:4898–4904

    Article  CAS  Google Scholar 

  • Heijman CG, Grieder E, Holliger C, Schwarzenbach RP (1995) Reduction of nitroaromatic compounds coupled to microbial iron reduction. Environ Sci Technol 29:775–783

    Article  CAS  Google Scholar 

  • Jain R, Varshney S, Sikarwar S (2007) Electrochemical techniques for the removal of Reactofix Golden Yellow 3 RFN from industrial wastes. J Colloid Interface Sci 313:248–253

    Article  CAS  Google Scholar 

  • Kappler A, Benz M, Schink B, Brune A (2004) Electron shuttling via humic acids in microbial iron (III) reduction in a freshwater sediment. FEMS Microbiol Ecol 47:85–92

    Article  CAS  Google Scholar 

  • Kim BH, Chang IS, Gadd GM (2007) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76:485–494

    Article  CAS  Google Scholar 

  • Liu GM, Wu TX, Zhao JC (1999) Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions. Environ Sci Technol 33:2081–2087

    Article  CAS  Google Scholar 

  • Liu L, Li FB, Feng CH (2009) Microbial fuel cell with an azo-dye-feeding cathode. Appl Microbiol Biotechnol 85:175–183

    Article  CAS  Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 12:10–12

    Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  • Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B 87:105–145

    Article  Google Scholar 

  • Mu Y, Rabaey K, Rozendal RA, Yuan Z, Keller J (2009) Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43:5137–5143

    Article  CAS  Google Scholar 

  • Schamphelaire LD, Van den Bossche L, Dang HS, Höfte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42:3053–3058

    Article  Google Scholar 

  • Weber EJ, Wolfe NL (1987) Kinetic studies of the reduction of aromatic azo compounds in anaerobic sediment/water systems. Environ Toxicol Chem 6:911–919

    Article  CAS  Google Scholar 

  • Yang R, Ruan C, Dai W, Deng J, Kong J (1999) Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly(thionine). Electrochim Acta 44:1585–1589

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Chinese Academy of Sciences (KZCX2-YW-QN504, KJCX2-YW-H21-01) and the Outstanding Young Scientists Foundation of Anhui Province, China (10040606Y27) for the support of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-** Sheng or Wen-Wei Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

GC/MS spectrum of the cathodic sample after MO degradation extracted by dichloromethane (DOC 73 kb)

Fig. S2

HPLC spectrum of the cathodic sample after MO degradation (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, RH., Sheng, GP., Sun, M. et al. Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators. Appl Microbiol Biotechnol 89, 201–208 (2011). https://doi.org/10.1007/s00253-010-2875-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2875-x

Keywords

Navigation