Log in

Diversity of MHC class I alleles in Spheniscus humboldti

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The major histocompatibility complex locus (MHC) is a gene region related to immune response and exhibits a remarkably great diversity. We deduced that polymorphisms in MHC genes would help to solve several issues on penguins, including classification, phylogenetic relationship, and conservation. This study aimed to elucidate the structure and diversity of the so far unknown MHC class I gene in a penguin species. The structure of an MHC class I gene from the Humboldt penguin (Spheniscus humboldti) was determined by using an inverse PCR method. We designed PCR primers to directly determine nucleotide sequences of PCR products from the MHC class I gene and to obtain recombinant clones for investigating the diversity of the MHC class I gene in Humboldt penguins. A total of 24 MHC class I allele sequences were obtained from 40 individuals. Polymorphisms were mainly found in exons 2 and 3, as expected from the nature of MHC class I genes in vertebrate species including birds and mammals. Phylogenetic analyses of MHC class I alleles have revealed that the Humboldt penguin is closely related to the Red Knot (Calidris canutus) belonging to Charadriiformes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci U S A 101:3490–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AJ, Pereira SL, Haddrath OP, Edge KA (2006) Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proc R Soc B 273:11–17

    Article  PubMed  Google Scholar 

  • Ballingall KT, Herrmann-Hoesing L, Robinson J, Marsh SG, Stear MJ (2011) A single nomenclature and associated database for alleles at the major histocompatibility complex class II DRB1 locus of sheep. Tissue Antigens 77:546–553

    Article  CAS  PubMed  Google Scholar 

  • Benkel BF, Fong Y (1996) Long range-inverse PCR (LR-IPCR): extending the useful range of inverse PCR. Genet Anal 13:123–127

    Article  CAS  PubMed  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518

    Article  CAS  PubMed  Google Scholar 

  • Bodmer JG, Marsh SG, Albert ED et al (1997) Nomenclature for factors of the HLA system, 1996. Tissue Antigens 49:297–321

    Article  CAS  PubMed  Google Scholar 

  • Bollmer JL, Vargas FH, Parker PG (2007) Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus). Immunogenetics 59:593–602

    Article  CAS  PubMed  Google Scholar 

  • Bollmer JL, Hull JM, Ernest HB, Sarasola JH, Parker PG (2011) Reduced MHC and neutral variation in the Galápagos hawk, an island endemic. BMC Evol Biol 11:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JA, Olivero EB, Puerta P (2003) Description of the earliest fossil penguin from South America and the first Paleogene vertebrate locality of Tierra del Fuego, Argentina. Am Mus Novitates 3423:1–18

    Article  Google Scholar 

  • Clarke JA, Ksepka DT, Stucchi M et al (2007) Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. Proc Natl Acad Sci U S A 104:11545–11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies CJ, Andersson L, Mikko S et al (1997) Nomenclature for factors of the BoLA system, 1996: report of the ISAG BoLA Nomenclature Committee. Anim Genet 28:159–168

    Article  CAS  Google Scholar 

  • de Bakker P, Raychaudhuri S (2012) Interrogating the major histocompatibility complex with high-throughput genomics. Hum Mol Genet 21:R29–R36

    Article  PubMed  PubMed Central  Google Scholar 

  • del Hoyo J, Elliott A, Christie DA (2010) Handbook of the birds of the world. Vol.15. Weavers to New World Warblers, Lynx Editions

  • Eimes JA, Bollmer JL, Whittingham LA, Johnson JA, VAN Oosterhout C, Dunn PO (2011) Rapid loss of MHC class II variation in a bottlenecked population is explained by drift and loss of copy number variation. J Evol Biol 24:1847–1856

    Article  CAS  PubMed  Google Scholar 

  • Eimes JA, Reed KM, Mendoza KM, Bollmer JL, Whittingham LA, Bateson ZW, Dunn PO (2013) Greater prairie chickens have a compact MHC-B with a single class IA locus. Immunogenetics 65:133–144

    Article  CAS  PubMed  Google Scholar 

  • Forcada J, Trathan PN (2009) Penguin responses to climate change in the Southern Ocean. Glob Chang Biol 15:1618–1630

    Article  Google Scholar 

  • Fordyce RE, Jones CM (1990) Penguin biology. In: Penguin history and new fossil material from New Zealand, San Diego., pp 419–446

    Google Scholar 

  • Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D (2007) Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol Biol Evol 24:269–280

    Article  CAS  PubMed  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  CAS  PubMed  Google Scholar 

  • Hawley DM, Fleischer RC (2012) Contrasting epidemic histories reveal pathogen-mediated balancing selection on class II MHC diversity in a wild songbird. PLoS One 7:e30222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. Bioscience 52:423–431

    Article  Google Scholar 

  • Ho CS, Lunney JK, Ando A, Rogel-Gaillard C, Lee JH, Schook LB, Smith DM (2009) Nomenclature for factors of the SLA system, update 2008. Tissue Antigens 73:307–315

    Article  CAS  PubMed  Google Scholar 

  • Högstrand K, Böhme J (1999) Gene conversion can create new MHC alleles. Immunol Rev 167:305–317

    Article  PubMed  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415

    Article  CAS  PubMed  Google Scholar 

  • Jarvis ED, Mirarab S, Aberer AJ et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikkawa EF, Tsuda TT, Naruse TK et al (2005) Analysis of the sequence variations in the Mhc DRB1-like gene of the endangered Humboldt penguin (Spheniscus humboldti). Immunogenetics 57:99–107

    Article  CAS  PubMed  Google Scholar 

  • Kikkawa EF, Tsuda TT, Sumiyama D et al (2009) Trans-species polymorphism of the Mhc class II DRB-like gene in banded penguins (genus Spheniscus). Immunogenetics 61:341–352

    Article  CAS  PubMed  Google Scholar 

  • Klein J, Bontrop RE, Dawkins RL et al (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219

    CAS  PubMed  Google Scholar 

  • Knafler GJ, Clark JA, Boersma PD, Bouzat JL (2012) MHC diversity and mate choice in the magellanic penguin, Spheniscus magellanicus. J Hered 103:759–768

    Article  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Nolan T, Bustin SA (2013) PCR technology: current innovations, third edition. In: Cotesman et al. (eds) Chromosome Walking by inverse PCR, pp 299–305

  • Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF (2006) Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol 1766:3674–3785

    Article  Google Scholar 

  • Oliver MK, Piertney SB (2012) Selection maintains MHC diversity through a natural population bottleneck. Mol Biol Evol 29:1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Pena MF, Poulin E, Dantas GP, González-Acuna D, Petry MV, Vianna JA (2014) Have historical climate changes affected Gentoo penguin (Pygoscelis papua) populations in Antarctica? PLoS One 9:e95375

    Article  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Haven

    Google Scholar 

  • Singh S, Shih SJ, Vaughan AT (2014) Detection of DNA double-strand breaks and chromosome translocations using ligation-mediated PCR and inverse PCR. Methods Mol Biol 1105:399–415

    Article  CAS  PubMed  Google Scholar 

  • Slack KE, Jones CM, Ando T, Harrison GL, Fordyce RE, Arnason U, Penny D (2006) Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol Biol Evol 23:1144–1155

    Article  CAS  PubMed  Google Scholar 

  • Slack KE, Delsuc F, McLenachan PA, Arnason U, Penny D (2007) Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol Phylogenet Evol 42:1–13

    Article  CAS  PubMed  Google Scholar 

  • Stemmer WP, Morris SK (1992) Enzymatic inverse PCR: a restriction site independent, single-fragment method for high-efficiency, site-directed mutagenesis. Biotechniques 13:214–220

    CAS  PubMed  Google Scholar 

  • Sutton JT, Nakagawa S, Robertson BC, Jamieson IG (2011) Disentangling the roles of natural selection and genetic drift in sha** variation at MHC immunity genes. Mol Ecol 20:4408–4420

    Article  PubMed  Google Scholar 

  • Sutton JT, Robertson BC, Grueber CE, Stanton JA, Jamieson IG (2013) Characterization of MHC class II B polymorphism in bottlenecked New Zealand saddlebacks reveals low levels of genetic diversity. Immunogenetics 65:619–633

    Article  CAS  PubMed  Google Scholar 

  • Sutton JT, Robertson BC, Jamieson IG (2015) MHC variation reflects the bottleneck histories of New Zealand passerines. Mol Ecol 24:362–373

    Article  PubMed  Google Scholar 

  • Tonooka Y, Fujishima M (2009) Comparison and critical evaluation of PCR-mediated methods to walk along the sequence of genomic DNA. Appl Microbiol Biotechnol 85:37–43

    Article  CAS  PubMed  Google Scholar 

  • Trinh Q, Xu W, Shi H, Luo Y, Huang K (2012) An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias. Anal Biochem 425:62–67

    Article  CAS  PubMed  Google Scholar 

  • Tripati A, Backman J, Elderfield H, Ferretti P (2005) Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436:341–346

    Article  CAS  PubMed  Google Scholar 

  • Tsuda TT, Tsuda M, Naruse T et al (2001) Phylogenetic analysis of penguin (Spheniscidae) species based on sequence variation in MHC class II genes. Immunogenetics 53:712–716

    Article  CAS  PubMed  Google Scholar 

  • Williams TD (1995) The penguins. Oxford University Press

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Japan Association of Zoological Gardens and Aquariums (JAZGA) and Mr. Michio Fukuda (Tokyo Sea Life Park, Tokyo, Japan) and Mr. Masanori Kurita (Port of Nagoya Public Aquarium, Nagoya, Japan) for providing us with the precious penguin samples. We would like to thank Dr. Kazuyoshi Hosomichi and Dr. Hidetoshi Inoko for their contributions in the initial course of this study. We also thank Ms. Nana Okubo, technician, Office for Gender Equality and Work-Life balance, Tokyo Medical and Dental University, for her technical assistance. This work was supported in part by program for women researchers from the Tokyo Medical and Dental University, Japan, in 2015 and 2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taeko K. Naruse or Akinori Kimura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 267 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikkawa, E., Tanaka, M., Naruse, T.K. et al. Diversity of MHC class I alleles in Spheniscus humboldti . Immunogenetics 69, 113–124 (2017). https://doi.org/10.1007/s00251-016-0951-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-016-0951-9

Keywords

Navigation