Log in

Fast calculation of the infrared spectra of large biomolecules

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Vibrational spectra of proteins potentially give insight into biologically significant molecular motion and the proportions of different types of secondary structure. Vibrational spectra can be calculated either from normal modes obtained by diagonalizing the mass-weighted Hessian or from the time autocorrelation function derived from molecular dynamics trajectories. The Hessian matrix is calculated from force fields because it is not practical to calculate the Hessian from quantum mechanics for large molecules. As an alternative to molecular dynamics the spectral response can be calculated from a time autocorrelation derived from numerical solution of the harmonic equations of motion, resulting in calculations at least 4 times faster. Because the calculation also scales linearly with number of atoms, N, it is faster than normal-mode calculations that scale as N 3 for proteins with more then 4,700 atoms. Using this method it is practical to perform all-atom calculations for large biological systems, for example viral capsids, with the order of 105 atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181

    Article  PubMed  CAS  Google Scholar 

  • Bahar I, Lezon TR, Bakan A, Shrivastava IH (2010) Normal-mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev 110:1463–1497

    Article  PubMed  CAS  Google Scholar 

  • Beeman D, Alben R (1977) Vibrational properties of elemental amorphous-semiconductors. Adv Phys 26:339–361

    Article  CAS  Google Scholar 

  • Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 80:6571–6575

    Article  PubMed  CAS  Google Scholar 

  • Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  PubMed  CAS  Google Scholar 

  • Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Lee H, Lee KK, Hahn S, Cho M (2007) Computational spectroscopy of ubiquitin: comparison between theory and experiments. J Chem Phys 126:045102

    Article  PubMed  Google Scholar 

  • Gaigeot MP, Vuilleumier R, Sprik M, Borgis D (2005) Infrared spectroscopy of N-methylacetamide revisited by ab initio molecular dynamics simulations. J Chem Theory Comput 1:772–789

    Article  CAS  Google Scholar 

  • Grahnen JA, Amunson KE, Kubelka J (2010) DFT-based simulations of IR amide I’ spectra for a small protein in solution: comparison of explicit and empirical solvent models. Journal of Physical Chemistry B 114:13011–13020

    Article  CAS  Google Scholar 

  • Hinsen K (1998) Analysis of domain motions by approximate normal mode calculations. Protein Struct Funct Genet 33:417–429

    Article  CAS  Google Scholar 

  • Kubelka J, Bour P (2009) Simulation of vibrational spectra of large molecules by arbitrary time propagation. J Chem Theory Comput 5:200–207

    Article  CAS  Google Scholar 

  • Kubelka J, Keiderling TA (2001) Differentiation of beta-sheet-forming structures: ab initio-based simulations of IR absorption and vibrational CD for model peptide and protein beta-sheets. J Am Chem Soc 123:12048–12058

    Article  PubMed  CAS  Google Scholar 

  • Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Natl Bur Stand 45:255–282

    Article  Google Scholar 

  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Markelz AG (2008) Terahertz dielectric sensitivity to biomolecular structure and function. IEEE J Sel Top Quant Electron 14:180–190

    Article  CAS  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computation, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Schlick T (2002) Molecular modeling and simulation: an interdisciplinary guide. Springer, New York

    Book  Google Scholar 

  • Tama F (2003) Normal-mode analysis with simplified models to investigate the global dynamics of biological systems. Protein Pept Lett 10:119–132

    Article  PubMed  CAS  Google Scholar 

  • Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1–6

    Article  PubMed  CAS  Google Scholar 

  • Tama F, Gadea FX, Marques O, Sanejouand YH (2000) Building-block approach for determining low-frequency normal modes of macromolecules. Protein Struct Funct Genet 41:1–7

    CAS  Google Scholar 

  • Torii H, Tasumi M (1992) Model calculations on the amide-I infrared bands of globular proteins. J Chem Phys 96:3379–3387

    Article  CAS  Google Scholar 

  • Wilkinson JH (1988) The algebraic eigenvalue problem. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We thank the Defense Threat Reduction Agency Grant HDTRA-08-0040 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mott, A.J., Thirumuruganandham, S.P., Thorpe, M.F. et al. Fast calculation of the infrared spectra of large biomolecules. Eur Biophys J 42, 795–801 (2013). https://doi.org/10.1007/s00249-013-0927-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0927-8

Keywords

Navigation