Log in

X-ray lithography and small-angle X-ray scattering: a combination of techniques merging biology and materials science

  • REVIEW
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The advent of micro/nanotechnology has blurred the border between biology and materials science. Miniaturization of chemical and biological assays, performed by use of micro/nanofluidics, requires both careful selection of the methods of fabrication and the development of materials designed for specific applications. This, in turn, increases the need for interdisciplinary combination of suitable microfabrication and characterisation techniques. In this review, the advantages of combining X-ray lithography, as fabrication technique, with small-angle X-ray scattering measurements will be discussed. X-ray lithography enables the limitations of small-angle X-ray scattering, specifically time resolution and sample environment, to be overcome. Small-angle X-ray scattering, on the other hand, enables investigation and, consequently, adjustment of the nanostructural morphology of microstructures and materials fabricated by X-ray lithography. Moreover, the effect of X-ray irradiation on novel materials can be determined by use of small-angle X-ray scattering. The combination of top-down and bottom-up methods to develop new functional materials and structures with potential in biology will be reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amenitsch H, Marmiroli B (2011) Time-resolved structure investigation with small-angle X-ray scattering using scanning techniques. Rendiconti Lincei 22:S93–S107

    Article  Google Scholar 

  • Amenitsch H, Bernstorff S, Kriechbaum M, Lombardo D, Mio H, Rappolt M, Laggner P (1997) Performance and first results of the ELETTRA high-flux beamline for small-angle X-ray scattering. J Appl Crystallogr 30:872–876

    Article  CAS  Google Scholar 

  • Becker EW, Ehrfeld W, Hagmann P, Maner A, Muenchmeyer D (1986) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron Eng 4:35–56

    Article  CAS  Google Scholar 

  • Brinker CJ, Dunphy DR (2006) Morphological control of surfactant-templated metal oxide films. Curr Opin Colloid Interface Sci 11:126–132

    Article  CAS  Google Scholar 

  • Choi BCK, Pak AWP (2006) Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clin Investig Med 29:351–364

    Google Scholar 

  • Costacurta S, Malfatti L, Patelli A, Falcaro P, Amenitsch H, Marmiroli B, Grenci G, Piccinini M, Innocenzi P (2010) Deep X-ray lithography for direct patterning of PECVD films. Plasma Process Polym 7:459–465

    Article  CAS  Google Scholar 

  • Costacurta S, Falcaro P, Malfatti L, Marongiu D, Marmiroli B, Cacho-Nerin F, Amenitsch H, Kirkby N, Innocenzi P (2011) Sha** mesoporous films using dewetting on X-ray pre-patterned hydrophilic/hydrophobic layers and pinning effects at the pattern edge. Langmuir 27:3898–3905

    Article  PubMed  CAS  Google Scholar 

  • Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    Article  PubMed  CAS  Google Scholar 

  • del Campo A, Arzt E (2008) Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem Rev 108:911–945

    Article  PubMed  Google Scholar 

  • del Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17:R81–R95

    Article  Google Scholar 

  • Doshi DA, Huesing NK, Lu M, Fan H, Lu Y, Simmons-Potter K, Potter BG, Hurd AJ, Brinker CJ (2000) Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. Science 290:107–111

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Rademann K (2009) Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices. Adv Funct Mater 19:2045–2052

    Article  CAS  Google Scholar 

  • Eichelbaum M, Rademann K, Mueller R, Radtke M, Riesemeier H, Goerner W (2005) On the chemistry of gold in silicate glasses: studies on a nonthermally activated growth of gold nanoparticles. Angew Chem Int Ed 44:7905–7909

    Article  CAS  Google Scholar 

  • Eichelbaum M, Rademann K, Hoell A, Tatchev DM, Weigel W, Stoesser R, Pacchioni G (2008) Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology 19:135701

    Google Scholar 

  • Falcaro P, Innocenzi P (2011) X-rays to study, induce, and pattern structures in sol-gel materials. J Sol Gel Sci Technol 57:236–244

    Article  CAS  Google Scholar 

  • Falcaro P, Costacurta S, Malfatti L, Takahashi M, Kidchob T, Casula MF, Piccinini M, Marcelli A, Marmiroli B, Amenitsch H, Schiavuta P, Innocenzi P (2008) Fabrication of mesoporous functionalized arrays by integrating deep X-ray lithography with dip-pen writing. Adv Mater 20:1864–1869

    Article  CAS  Google Scholar 

  • Falcaro P, Malfatti L, Kidchob T, Giannini G, Falqui A, Casula MF, Amenitsch H, Marmiroli B, Grenci G, Innocenzi P (2009) Hierarchical porous silica films with ultralow refractive index. Chem Mater 21:2055–2061

    Article  CAS  Google Scholar 

  • Falcaro P, Hill AJ, Nairn KM, Jasieniak J, Mardel JI, Bastow TJ, Mayo SC, Gimona M, Gomez D, Whitfield HJ, Riccó R, Patelli A, Marmiroli B, Amenitsch H, Colson T, Villanova L, Buso D (2011) A new method to position and functionalize metal-organic framework crystals. Nature Commun 2:A237

    Google Scholar 

  • Fan H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, Lopez GP, Brinker CJ (2000) Rapid prototy** of patterned functional nanostructures. Nature 405:56–60

    Article  PubMed  CAS  Google Scholar 

  • Faustini M, Vayer M, Marmiroli B, Hillmyer M, Amenitsch H, Sinturel C, Grosso D (2010) Bottom-up approach toward titanosilicate mesoporous pillared planar nanochannels for nanofluidic applications. Chem Mater 22:5687–5694

    Article  CAS  Google Scholar 

  • Faustini M, Marmiroli B, Malfatti L, Louis B, Krins N, Falcaro P, Grenci G, Laberty-Robert C, Amenitsch H, Innocenzi P, Grosso D (2011) Direct nano-in-micropatterning of TiO2 thin layers and TiO2/Pt nanoelectrode arrays by deep X-ray lithography. J Mater Chem 21:3597–3603

    Article  CAS  Google Scholar 

  • Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-Ray and neutron scattering. Plenum Press, New York and London

    Google Scholar 

  • Goettert J, Moser HO, Pantenburg FJ, Saile V, Steininger R (2000) ANKA—a synchrotron light source for X-ray based micromachining. Microsyst Technol 6:113–116

    Article  Google Scholar 

  • Hozumi A, Cheng DF (2011) Facile micropatterning of mesoporous titania film by low-energy electron beam irradiation. Mater Chem Phys 129:464–470

    Article  CAS  Google Scholar 

  • Hozumi A, Kimura T (2008) Rapid micropatterning of mesoporous silica film by site-selective low-energy electron beam irradiation. Langmuir 24:11141–11146

    Article  PubMed  CAS  Google Scholar 

  • Innocenzi P, Falcaro P, Schergna S, Maggini M, Menna E, Amenitsch H, Soler-Illia JAA, Grosso D, Sanchez C (2004) One-pot self-assembly of mesostructured silica films and membranes functionalised with fullerene derivatives. J Mater Chem 14:1838–1842

    Article  CAS  Google Scholar 

  • Innocenzi P, Kidchob T, Falcaro P, Takahashi M (2008) Patterning techniques for mesostructured films. Chem Mater 20:607–614

    Article  CAS  Google Scholar 

  • Lebeau B, Innocenzi P (2011) Hybrid materials for optics and photonics. Chem Soc Rev 40:886–906

    Article  PubMed  CAS  Google Scholar 

  • Levine JR, Cohen B, Chung JW, Georgopoulos P (1989) Grazing-incidence small-angle X-ray scattering: new tool for studying thin film growth. J Appl Crystallogr 22:528–532

    Article  CAS  Google Scholar 

  • Liu Y, Cui T, Coane PJ, Vasile MJ, Goettert J (2003) High-aspect-ratio microstructures fabricated by X-ray lithography of polymethylsilsesquioxane-based spin-on glass thick films. Microsyst Technol 9:171–175

    Article  Google Scholar 

  • Loechel B, Goettert J, Desta YM (2007) Direct LIGA service for prototy**: status report. Microsyst Technol 13:327–334

    Article  CAS  Google Scholar 

  • Lu Y, Yang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 410:913–917

    Article  PubMed  CAS  Google Scholar 

  • Malfatti L, Marongiu D, Costacurta S, Falcaro P, Amenitsch H, Marmiroli B, Grenci G, Casula MF, Innocenzi P (2010) Writing self-assembled mesostructured films with in situ formation of gold nanoparticles. Chem Mater 22:2132–2137

    Article  CAS  Google Scholar 

  • Malfatti L, Falcaro P, Marmiroli B, Amenitsch H, Piccinini M, Falqui A, Innocenzi P (2011) Nanocomposite mesoporous ordered films for lab-on-chip intrinsic surface enhanced Raman scattering detection. Nanoscale 3:3760–3766

    Article  PubMed  CAS  Google Scholar 

  • Marmiroli B, Grenci G, Cacho-Nerin F, Sartori B, Ferrari E, Laggner P, Businaro L, Amenitsch H (2009) Free jet micromixer to study fast chemical reactions by small-angle X-ray scattering. Lab Chip Miniat Chem Biol 9:2063–2069

    Article  CAS  Google Scholar 

  • Marmiroli B, Grenci G, Cacho-Nerin F, Sartori B, Laggner P, Businaro L, Amenitsch H (2010) Experimental set-up for time resolved small-angle X-ray scattering studies of nanoparticles formation using a free-jet micromixer. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:329–333

    Article  CAS  Google Scholar 

  • Martinez-Manez R, Sancenon F, Biyikal M, Hecht M, Rurack K (2011a) Mimicking tricks from nature with sensory organic-inorganic hybrid materials. J Mater Chem 21:12588–12604

    Article  CAS  Google Scholar 

  • Martinez-Manez R, Sancenon F, Hecht M, Biyikal M, Rurack K (2011b) Nanoscopic optical sensors based on functional supramolecular hybrid materials. Anal Bioanalytical Chem 399:55–74

    Article  CAS  Google Scholar 

  • Melde BJ, Johnson BJ (2010) Mesoporous materials in sensing: morphology and functionality at the meso-interface. Anal Bioanalytical Chem 398:1565–1573

    Article  CAS  Google Scholar 

  • Nazmov V, Reznikova E, Mohr J (2011a) Investigation of the radiation-induced thermal flexure of an X-ray lithography mask during a tilted exposure. J Vac Sci Technol B Microelectron Nanometer Struct 29:0110071–0110077

    Article  Google Scholar 

  • Nazmov V, Reznikova E, Mohr J, Saile V, Vincze L, Vekemans B, Bohic S, Somogyi A (2011b) Parabolic crossed planar polymeric X-ray lenses. J Micromech Microeng 21:015020

  • Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  PubMed  CAS  Google Scholar 

  • Otten A, Koster S, Struth B, Snigirev A, Pfohl T (2005) Microfluidics of soft matter investigated by small-angle X-ray scattering. J Synchrotron Radiat 12:745–750

    Article  PubMed  CAS  Google Scholar 

  • Ozin GA, Cademartiri L (2009) Nanochemistry: what is next? Small 5:1240–1244

    Article  PubMed  CAS  Google Scholar 

  • Panine P, Finet S, Weiss TM, Narayanan T (2006) Probing fast kinetics in complex fluids by combined rapid mixing and small-angle X-ray scattering. Adv Colloid Interface Sci 127:9–18

    Article  PubMed  CAS  Google Scholar 

  • Perennes F, Vesselli E, Pantenburg FJ (2002) Deep X-ray lithography at ELETTRA using a central beam-stop to enhance adhesion. Microsyst Technol 8:330–334

    Article  Google Scholar 

  • Perennes F, Marmiroli B, Tormen M, Matteucci M, Di Fabrizio E (2006) Replication of deep X-ray lithography fabricated microstructures through casting of soft material. J Microlithogr Microfabr Microsyst 5:011007

    Google Scholar 

  • Roder H, Maki K, Cheng H (2006) Early events in protein folding explored by rapid mixing methods. Chem Rev 106:1836–1861

    Article  PubMed  CAS  Google Scholar 

  • Romanato F, Businaro L, Tormen M, Perennes F, Matteucci M, Marmiroli B, Balslev S, Di Fabrizio E (2006) Fabrication of 3D micro and nanostructures for MEMS and MOEMS: an approach based on combined lithographies. J Phys, Conf Ser 34:904–911

    Article  CAS  Google Scholar 

  • Saile V, Wallrabe U, Tabata O, Korvink JG (2009) Liga and its applications. Wiley-VCH Verlag GmbH & Co KGaA, Hoboken NJ

    Google Scholar 

  • Scott BJ, Wirnsberger G, McGehee MD, Chmelka BF, Stucky GD (2001) Dye-doped mesostructured silica as a distributed feedback laser fabricated by soft lithography. Adv Mater 13:1231–1234

    Article  CAS  Google Scholar 

  • Sukhorukov GB, Volodkin DV, Guenther AM, Petrov AI, Shenoy DB, Moehwald H (2004) Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J Mater Chem 14:2073–2081

    Article  CAS  Google Scholar 

  • Tatchev D, Hoell A, Eichelbaum M, Rademann K (2011) X-ray-assisted formation of gold nanoparticles in soda lime silicate glass: suppressed Ostwald ripening. Phys Rev Lett 106:085702

    Google Scholar 

  • Tormen M, Grenci G, Marmiroli B, Romanato F (2011) X-ray lithography: fundamentals and applications. In: Stefan Landis (ed) Nano lithography. ISTE Ltd. and John Wiley & Sons, Inc., London and Hoboken, pp 1–86

    Google Scholar 

  • Vyawahare S, Griffiths AD, Merten CA (2010) Miniaturization and parallelization of biological and chemical assays in microfluidic devices. Chem Biol 17:1052–1065

    Article  PubMed  CAS  Google Scholar 

  • Walcarius A (2008) Electroanalytical applications of microporous zeolites and mesoporous (organo)silicas: recent trends. Electroanalysis 20:711–738

    Article  CAS  Google Scholar 

  • Walcarius A, Collinson MM (2009) Analytical chemistry with silica sol-gels: traditional routes to new materials for chemical analysis. Rev Anal Chem 2:121–143

    Article  CAS  Google Scholar 

  • Walcarius A, Kuhn A (2008) Ordered porous thin films in electrochemical analysis. Trends Anal Chem 27:593–603

    Article  CAS  Google Scholar 

  • Walcarius A, Mercier L (2010) Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. J Mater Chem 20:4478–4511

    Article  CAS  Google Scholar 

  • Wang C, Jones RL, Lin EK, Wu WL, Rice BJ, Choi KW, Thompson G, Weigand SJ, Keane DT (2007) Characterization of correlated line edge roughness of nanoscale line gratings using small-angle X-ray scattering. J Appl Phys 102:024901

    Google Scholar 

  • Wu CW, Aoki T, Kuwabara M (2004) Electron-beam lithography assisted patterning of surfactant-templated mesoporous thin films. Nanotechnology 15:1886–1889

    Article  CAS  Google Scholar 

  • Zschech E, Wyon C, Murray CE, Schneider G (2011) Devices, materials, and processes for nanoelectronics: characterization with advanced X-ray techniques using lab-based and synchrotron radiation sources. Adv Eng Mater 13:811–836

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B. Sartori is acknowledged for the help with preparation of some of the figures. The authors particularly thank the small angle-scattering-group from the Austrian SAXS beamline, which contributed to parts of this work, namely: F. Cacho-Nerin, K. Jungnikl, I. Shyjumon, F. Schmid, D. Jozic, C. Morello, M. Rappolt, S. Bernstorff and, most notably, P. Laggner, who initiated and led the project of the Austrian SAXS beamline at the synchrotron ELETTRA, Trieste.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Amenitsch.

Additional information

Special Issue: Scattering techniques in biology—Marking the contributions to the field by Peter Laggner, on the occasion of his 68th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmiroli, B., Amenitsch, H. X-ray lithography and small-angle X-ray scattering: a combination of techniques merging biology and materials science. Eur Biophys J 41, 851–861 (2012). https://doi.org/10.1007/s00249-012-0843-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0843-3

Keywords

Navigation