Log in

From spin-labeled proteins to in vivo EPR applications

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

This is a historical overview of the advent of applications of spin labeling to biological systems and the subsequent developments from the perspective of a scientist who was working as a Ph.D. student when the technique was conceived and was fortunate enough to participate in its development. In addition, the historical development of in vivo applications of EPR on animals and other living systems is described from a personal perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altenbach C, Marti T, Khorana H (1990) Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248:088–1092

    Article  Google Scholar 

  • Barratt MD, Davies AP, Evans MT (1971) Maleimide and isomaleimide pyrrolidine–nitroxide spin labels. Eur J Biochem 24:280–283

    Article  CAS  PubMed  Google Scholar 

  • Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39:5355–5365

    Article  CAS  PubMed  Google Scholar 

  • Bauer RS, Berliner LJ (1979) Spin label investigations of chymotrypsin active site structure in single crystals. J Mol Biol 128:1–19

    Article  CAS  PubMed  Google Scholar 

  • Bender ML, Kezdy FJ (1965) Mechanism of action of proteolytic enzymes. Ann Rev Biochem 34:49–76

    Article  CAS  PubMed  Google Scholar 

  • Berliner LJ (1976) Spin labeling: theory and applications. Academic Press, New York

    Google Scholar 

  • Berliner L (1979a) Methods of spin labeling Russian translation of spin labeling: theory and applications. Academic Press, Mir

    Google Scholar 

  • Berliner LJ (1979b) Spin labeling II: theory and applications. Academic Press, New York

    Google Scholar 

  • Berliner LJ (1983) The spin labeling approach to labeling sulfhydryl groups in membrane proteins. Ann NY Acad Sci 414:153–161

    Article  CAS  PubMed  Google Scholar 

  • Berliner LJ (1990) The use of spin labels in looking at subtle conformational changes in blood coagulation proteins. Pure Appl Chem 62:247–254

    Article  CAS  Google Scholar 

  • Berliner LJ (1998) Spin labeling: the next millenium, biological magnetic resonance, vol 14. Plenum, New York

    Google Scholar 

  • Berliner LJ (2003) In vivo EPR(ESR): theory and applications, biological magnetic resonance, vol 18. Kluwer, New York

  • Berliner LJ, McConnell HM (1966) A spin-labeled substrate for alpha-chymotrypsin. Proc Natl Acad Sci USA 55:708–712

    Article  CAS  PubMed  Google Scholar 

  • Berliner LJ, McConnell HM (1971) Spin label orientation at the active site of α-chymotrypsin in single crystals. Biochem Biophys Res Commun 43:651–657

    Article  CAS  PubMed  Google Scholar 

  • Berliner LJ, Reuben J (1989) Spin labeling: theory and applications, biological magnetic resonance, vol 8. Plenum, New York

    Google Scholar 

  • Berliner LJ, Grunwald J, Hankovszky HO, Hideg K (1982) Anal Biochem 119:450–455

    Article  CAS  PubMed  Google Scholar 

  • Berliner LJ, Fujii H, Wan X, Lukiewicz SJ (1987) Feasibility study of imaging a living murine tumour by electron paramagnetic resonance. Magn Reson Med 4:380–384

    Article  CAS  PubMed  Google Scholar 

  • Borbat PP, Freed JH (1999) Multiple-quantum ESR and distance measurement. Chem Phys Lett 313:145–154

    Article  CAS  Google Scholar 

  • Borbat PP, Freed JH (2000) Electron spin resonance in studies of membranes and proteins. Biol Magn Reson 19:383–459

    Article  CAS  Google Scholar 

  • Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH (2001) Electron spin resonance in studies of membranes and proteins. Science 291:266–269

    Article  CAS  PubMed  Google Scholar 

  • Bowen S, Hilty C (2008) Time-resolved dynamic nuclear polarization enhanced NMR spectroscopy. Angew Chem Int Ed 47:5235

    Article  CAS  Google Scholar 

  • Burr M, Koshland DE Jr (1964) Use of reporter groups in structure–function studies of proteins. Proc Natl Acad Sci USA 52:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Commoner B, Hollocher TC Jr (1960) Free radicals in heart muscle mitochondrial particles: general characteristics and localization in the electron transport system. Proc Natl Acad Sci USA 46:405–416

    Article  CAS  PubMed  Google Scholar 

  • Feix JB, Klug CS (1998) Site-directed spin labeling of membrane proteins and peptide-membrane interactions, in spin labeling: the next millennium. In: Berliner LJ (ed) Biological magnetic resonance, vol 14. Plenum Press, New York, pp 251–281

    Chapter  Google Scholar 

  • Feldman A, Wildman E, Bartolinini G, Piette LH (1975) In vivo electron spin resonance in rats. Phys Med Biol 20:602–612

    Article  CAS  PubMed  Google Scholar 

  • Flohr K, Kaiser ET (1972) Enantiomeric specificity in the chymotrypsin-catalyzed hydrolysis of 3-carboxy-2,2,5,5-tetramethylpyrrolidino-1-oxy p-nitrophenyl ester. J Am Chem Soc 94:3675–3676

    Article  CAS  PubMed  Google Scholar 

  • Froncisz W, Hyde JS (1982) The loop-gap resonator: a new microwave lumped circuit ESR sample structure. J Magn Reson 47:515–521

    CAS  Google Scholar 

  • Fujii H, Berliner LJ (1999) In vivo EPR evidence for free radical adducts of nifedipine. Magn Reson Med 42:691–694

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Wan X, Zhong J, Berliner LJ, Yoshikawa K (1999) In vivo imaging of spin-trapped nitric oxide in rats with septic shock: MRI spin trap**. Magn Reson Med 42:235–239

    Article  CAS  PubMed  Google Scholar 

  • Griffith OH, McConnell HM (1966) A nitroxide–maleimide spin label. Proc Natl Acad Sci USA 55:8–11

    Article  CAS  PubMed  Google Scholar 

  • Gullà SV, Sharma G, Borbat P, Freed JH, Ghimire H, Benedikt MR, Holt NL, Lorigan GA, Rege K, Mavroidis C, Budil DE (2009) Molecular-scale force measurement in a coiled-coil peptide dimer by electron spin resonance. J Am Chem Soc 131:5374–5375

    Article  Google Scholar 

  • Halpern HJ, Yu C, Peric M, Barth E, Grdina DJ, Teicher BA (1994) Oximetry deep in tissues with low-frequency electron paramagnetic resonance. Proc Natl Acad Sci USA 91:13047–13051

    Article  CAS  PubMed  Google Scholar 

  • Hemminga MA, Berliner LJ (2007) ESR spectroscopy in membrane biophysics, biological magnetic resonance, vol 27. Springer, New York

    Book  Google Scholar 

  • Hubbell WL, Altenbach C (1994) Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr Opin Struct Biol 4:566–573

    Article  CAS  Google Scholar 

  • Jost P, Griffith OH (1971) Electron spin resonance and the spin labeling method. Methods Pharmacol 2:223–276

    Google Scholar 

  • Kenyon GL, Bruice TW (1977) Novel sulfhydryl reagents. Meth Enzymol 47:407–430

    Article  CAS  PubMed  Google Scholar 

  • Khramtsov V, Berliner LJ, Clanton TL (1999) NMR spin trap**: detection of free radical adducts using a phosphorus containing nitrone spin trap. Magn Reson Med 42:228–234

    Article  CAS  PubMed  Google Scholar 

  • Lozinsky E, Shames AI, Likhtenshtein GI (2004) Dual fluorophore–nitroxide molecules: models for study of intramolecular fluorescence quenching and novel redox probes and spin traps. J Photochem Photobiol A Chem 163:45–51

    Article  Google Scholar 

  • Lukiewicz SJ, Lukiewicz SG (1984) In vivo spectroscopy of large biological objects. Magn Reson Med 1:297–298

    Google Scholar 

  • Mak-Jurkauskas ML, Bajaj VS, Hornstein MK, Belenky M, Griffin RG, Herzfeld J (2008) Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc Natl Acad Sci USA 105:883–888

    Article  CAS  PubMed  Google Scholar 

  • Merkl AW, Hughes RC, Berliner LJ (1965) Pressure induced phase transitions in triplet exciton crystals. J Chem Phys 43:953–957

    Article  CAS  Google Scholar 

  • Mitchell JB, Xavier S, Deluca AM, Sowers AL, Cook JA, Krishna MC, Hahn SM, Russo A (2003) A low molecular weight antioxidant decreases weight and lowers tumor incidence. Free Radic Biol Med 34:93–102

    Article  CAS  PubMed  Google Scholar 

  • Nienaber VL, Berliner LJ (2000) Atomic structures of two nitroxide spin labels complexed with human thrombin: comparison with solution studies. J Protein Chem 19:129–137

    Article  CAS  PubMed  Google Scholar 

  • Nienaber VL, Boxrud P, Berliner LJ (2000) X-ray and solution studies provide a novel P1 fragment for thrombin inhibitor design. J Protein Chem 19:327–333

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa H, Fujii H, Berliner LJ (1985) Helices and surface coils for low field in vivo ESR and EPR imaging applications. J Magn Reson 62:79–86

    CAS  Google Scholar 

  • Psaty BM, Heckbert SR, Koepsell TD (1995) The risk of myocardial infarction associated with antihypertensive drug therapies. J Am Med Assoc 274:620–625

    Article  CAS  Google Scholar 

  • Rabenstein MD, Shin YK (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc Natl Acad Sci USA A92:8239–8243

    Article  Google Scholar 

  • Rosantzev EG, Neiman MB (1964) Organic radical reactions involving no free valence. Tetrahedron 20:131–137

    Article  Google Scholar 

  • Rozantsev EG (1970) Free nitroxyl radicals. Plenum Press, New York

    Google Scholar 

  • Stone TJ, Buckman T, Nordio PL, McConnell HM (1965) Spin-labeled biomolecules. Proc Natl Acad Sci USA 54:1010–1017

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Mitchell JB, Krishna MC (2003) Time-domain radio frequency EPR imaging. Biol Magn Reson 18:153–197

    CAS  Google Scholar 

  • Swartz HM, Khan N, Buckey J, Comi R, Gould L, Grinberg O, Hartford A, Hopf H, Hou HG, Hug E, Iwasaki A, Lesniewski P, Salikhov I, Walczak T (2004) Clinical applications of EPR: overview and perspectives. NMR Biomed 17:335–351

    Article  CAS  PubMed  Google Scholar 

  • Tollin P, Main P, Rossmann MG (1966) The symmetry of the rotation function. Acta Cryst 20:404–407

    Article  CAS  Google Scholar 

  • Weber G (1953) Polarization of the fluorescence of labeled protein molecules. Discuss Faraday Soc 13:33–39

    Article  Google Scholar 

  • Zhu P, Clamme J-P, Deniz AA (2005) Fluorescence quenching by TEMPO: a sub-30 Å single-molecule ruler. Biophys J 89:L37–L39

    Article  CAS  PubMed  Google Scholar 

  • Zweier J, Chzhan M, Samouilov A, Kuppusamy P (1998) Electron paramagnetic resonance imaging of the rat heart. Phys Med Biol 43:1823–1835

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence J. Berliner.

Additional information

The more you see: spectroscopy in molecular biophysics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berliner, L.J. From spin-labeled proteins to in vivo EPR applications. Eur Biophys J 39, 579–588 (2010). https://doi.org/10.1007/s00249-009-0534-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0534-x

Keywords

Navigation