Log in

Cross-linking properties of alginate gels determined by using advanced NMR imaging and Cu2+ as contrast agent

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The entrapment of enzymes, drugs, cells or tissue fragments in alginates cross-linked with Ca2+ or Ba2+ has great potential in basic research, biotechnology and medicine. The swelling properties and, in turn, the mechanical stability are key factors in designing an optimally cross-linked hydrogel matrix. These parameters depend critically on the cross-linking process and seemingly minor modifications in manufacture have a large impact. Thus, sensitive and non-invasive tools are required to determine the spatial homogeneity and efficacy of the cross-linking process. Here, we show for alginate microcapsules (between 400 µm and 600 µm in diameter) that advanced 1H NMR imaging, along with paramagnetic Cu2+ as contrast agent, can be used to validate the cross-linking process. Two- and three-dimensional images and maps of the spin-lattice relaxation time T 1 of Ba2+ cross-linked microcapsules exposed to external Cu2+ yielded qualitative as well as quantitative information about the accumulation of Cu2+ within and removal from microcapsules upon washing with Cu2+ free saline solution. The use of Cu2+ (having a slightly higher affinity constant to alginate than Ba2+) for gelling gave a complementary insight into the spatial homogeneity of the cross-linking process together with information about the mechanical stability of the microcapsules. The potential of this technique was demonstrated for alginates extracted from two different algal sources and cross-linked either externally by the conventional air-jet drop** method or internally by the "crystal gun" method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1A–D.
Fig. 2A–D.
Fig. 3A–D, i–iv.
Fig. 4A–B.
Fig. 5A–B, i–iii.

Similar content being viewed by others

References

  • Abragam A (1961) The principles of nuclear magnetism. Clarendon Press, Oxford

  • Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon Press, Oxford

  • Chibata I (1978) Immobilized enzymes. A Halsted Press Book. Kodansha, Tokyo and Wiley, New York

  • Cohen S, Bano MC, Chow M, Langer R (1991) Lipid–alginate interactions render changes in phospholipid bilayer permeability. Biochim Biophys Acta 1063:95–102

    Article  CAS  PubMed  Google Scholar 

  • Draget KI, Smidsrød O, Skjåk-Braek G (2002) Alginates from Algae. In: Steinbüchel A, De Baets S, Vandamme EJ (eds) Biopolymers, vol 6, Polysaccharides II. Wiley-VCH, Weinheim, pp 215–244

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, Oxford

  • Fukushima E, Roeder SBW (1981) Experimental pulse NMR. A nuts and bolts approach. Addison-Wesley, Mass.

  • Hartmeier W (1986) Immobilisierte Biokatalysatoren. Springer, Berlin Heidelberg New York

  • Hasse C, Klöck G, Schlosser A, Zimmermann U, Rothmund M (1997) Parathyroid allotransplantation without immunosuppression. Lancet 350:1296–1297

    CAS  PubMed  Google Scholar 

  • Haug A, Smidsrød O (1970) Selectivity of some anionic polymers for divalent metal ions. Acta Chem Scand 24:843–854

    CAS  Google Scholar 

  • Hillgärtner M, Zimmermann H, Mimietz S, Jork A, Thürmer F, Schneider H, Nöth U, Hasse C, Haase A, Fuhr G, Rothmund M, Zimmermann U (1999) Immunoisolation of transplants by entrapment in 19F-labelled alginate gels: production, biocompatibility, stability, and long-term monitoring of functional integrity. Mat- wiss u Werkstofftech 30:783–792

    Google Scholar 

  • Hunkeler D, Cherrington A, Prokop A, Rajotte R (2001) Bioartificial organs III. Tissue sourcing, immunoisolation and clinical trials. The New York Academy of Science, New York

  • Jork A, Thürmer F, Cramer H, Zimmermann G, Gessner P, Hämel K, Hofmann G, Kuttler B, Hahn HJ, Josimovic-Alasevic O, Fritsch KG, Zimmermann U (2000) Biocompatible alginate from freshly collected Laminaria pallida for implantation. Appl Microbiol Biotechnol 53:224–229

    Article  CAS  PubMed  Google Scholar 

  • Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potentional applications. Curr Issues Intest Microbiol 3:39–48

    CAS  PubMed  Google Scholar 

  • Kühtreiber WM, Lanza RP, Chick WL (1999) Cell encapsulation technology and therapeutics. Birkhäuser, Boston, Mass.

  • Laskin AI (1985) Enzymes and immobilized cells in biotechnology. Benjamin/Cummings, London

  • Leinfelder U, Brunnenmeier F, Schiller J, Vásquez JA, Cramer H, Arnold K, Zimmermann U (2003) Highly sensitive cell assay for validation of purification regimes of alginates. Biomaterials 24:4161–4172

    Google Scholar 

  • Mansfield P, Morris PG (1982) NMR imaging in biomedicine. Academic Press, New York

  • Mazaheri R, Atkison P, Stiller C, Dupré J, Vose J, O'Shea G (1991) Transplantation of encapsulated allogeneic islets into diabetic BB/W rats. Effects of immunosuppression. Transplantation 51:750–754

    CAS  PubMed  Google Scholar 

  • McHugh DJ (1987) Production and utilization of products from commercial seaweeds. Food and Agriculture Organization of the United Nations, Rome

  • Mullen Y, Maruyama M, Smith CV (2000) Current progress and perspectives in immunoisolated islet transplantation. J Hepatobiliary Pancreat Surg 7:347–357

    Article  CAS  PubMed  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1988) Numerical Recipes in C. The art of scientific computing. Cambridge University Press, Cambridge, pp 683–688

  • Rehm BHA (2002) Alginates from bacteria. In: Steinbüchel A, Vandamme EJ, De Beats S (eds) Biopolymers, vol 5, Polysaccharides I. Wiley-VCH, Weinheim, pp 179–212

  • Schnabl H, Zimmermann U (1989) Immobilization of plant protoplasts. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 8, Plant protoplasts and genetic engineering. Springer, Berlin Heidelberg New York, pp 63–96

  • Schneider S, Feilen P, Cramer H, Hillgärtner M, Brunnenmeier F, Zimmermann H, Weber MM, Zimmermann U (2003) Beneficial effects of human serum albumin on stability and functionality of alginate microcapsules fabricated in different ways. J Microencapsulation 20:627–636

    Google Scholar 

  • Slichter CP (1990) Principles of magnetic resonance. Springer, Berlin Heidelberg New York

  • Smidsrød O, Skjåk-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    CAS  PubMed  Google Scholar 

  • Thu B, Gaserod O, Paus D, Mikkelsen A, Skjåk-Braek G, Toffanin R, Vittur F, Rizzo R (2000) Inhomogeneous alginate gel spheres: an assessment of the polymer gradients by synchrotron radiation-induced X-ray emission, magnetic resonance microimaging, and mathematical modeling. Biopolymers 53:60–71

    Article  CAS  PubMed  Google Scholar 

  • Tonnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U, Mimietz S, Zimmermann H, Hillgärtner M, Schneider H, Ludwig J, Hasse C, Haase A, Rothmund M, Fuhr G (2000) Hydrogel-based non-autologous cell and tissue therapy. Biotechniques 29:564–581

    CAS  PubMed  Google Scholar 

  • Zimmermann U, Cramer H, Jork A, Thürmer F, Zimmermann H, Fuhr G, Hasse C, Rothmund M (2001) Microencapsulation-based cell therapy. In: Reed G, Rehm HJ (eds) Biotechnology. Wiley-VCH, Weinheim, pp 547–571

  • Zimmermann H, Hillgärtner M, Manz B, Feilen P, Brunnenmeier F, Leinfelder U, Weber M, Cramer H, Schneider S, Hendrich C, Volke F, Zimmermann U (2003a) Fabrication of homogeneously cross-linked, functional alginate microcapsules validated by NMR-, CLSM- and AFM-imaging. Biomaterials 24:2083–2096

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U, Leinfelder U, Hillgärtner M, Manz B, Zimmermann H, Brunnenmeier F, Weber M, Vásquez JA, Volke F, Hendrich C (2003b) Homogeneously cross-linked scaffolds based on clinical-grade alginate for transplantation and tissue engineering. In: Hendrich C, Nöth U, Eulert J (eds) Tissue engineering and cartilage replacement. Springer, Berlin Heidelberg New York, pp 77–86

Download references

Acknowledgements

We are grateful to M. Behringer for his great help in the development of the "crystal gun" method. This work was supported by grants of the Bundesministerium für Bildung und Forschung (BMBF 0311588) to UZ, by BMBF grants (16SV1366/0 and 03N8707) to HZ and a research grant from IBMT to FV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manz, B., Hillgärtner, M., Zimmermann, H. et al. Cross-linking properties of alginate gels determined by using advanced NMR imaging and Cu2+ as contrast agent. Eur Biophys J 33, 50–58 (2004). https://doi.org/10.1007/s00249-003-0341-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0341-8

Keywords

Navigation