Log in

Water Mass Controlled Vertical Stratification of Bacterial and Archaeal Communities in the Western Arctic Ocean During Summer Sea-Ice Melting

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The environmental variations and their interactions with the biosphere are vital in the Arctic Ocean during the summer sea-ice melting period in the current scenario of climate change. Hence, we analysed the vertical distribution of bacterial and archaeal communities in the western Arctic Ocean from sea surface melt-ponds to deep water up to a 3040 m depth. The distribution of microbial communities showed a clear stratification with significant differences among different water depths, and the water masses in the Arctic Ocean – surface mixed layer, Atlantic water mass and deep Arctic water – appeared as a major factor explaining their distribution in the water column. A total of 34 bacterial phyla were detected in the seawater and 10 bacterial phyla in melt-ponds. Proteobacteria was the dominant phyla in the seawater irrespective of depth, whereas Bacteroidota was the dominant phyla in the melt-ponds. A fast expectation-maximization microbial source tracking analysis revealed that only limited dispersion of the bacterial community was possible across the stratified water column. The surface water mass contributed 21% of the microbial community to the deep chlorophyll maximum (DCM), while the DCM waters contributed only 3% of the microbial communities to the deeper water masses. Atlantic water mass contributed 37% to the microbial community of the deep Arctic water. Oligotrophic heterotrophic bacteria were dominant in the melt-ponds and surface waters, whereas chemoautotrophic and mixotrophic bacterial and archaeal communities were abundant in deeper waters. Chlorophyll and ammonium were the major environmental factors that determined the surface microbial communities, whereas inorganic nutrient concentrations controlled the deep-water communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available in the NCBI repository, Bioproject number PRJNA770954). Submission information can be found at: http://www.ncbi.nlm.nih.gov/sra

Code Availability

Codes used in the current study are available from the corresponding author on reasonable request.

References

  1. Laxon S, Peacock N, Smith D (2003) High interannual variability of sea ice thickness in the Arctic region. Nature 425:947–950

    Article  CAS  PubMed  Google Scholar 

  2. Frey K, Comiso JC, Cooper LW, Eisner LB, Gradinger RR, Grebmeier JM, JE Tremblay (2017) Arctic Ocean Primary Productivity. In: Arctic Report Card 2017, NOAA, http://www.arctic.noaa.gov/Report-Card/Report-Card-2017/ArtMID/7798/ArticleID/701/Arctic-Ocean-Primary-Productivity

  3. Barber DG, Hop H, Mundy CJ, Else B, Dmitrenko IA, Tremblay J-E, Ehn JK, Assmy P, Daase M, Candlish LM (2015) Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog Oceanogr 139:122–150

    Article  Google Scholar 

  4. Pemberton P, Nilsson J, Hieronymus M, Meier HM (2015) Arctic Ocean water mass transformation in S–T coordinates. J Phys Oceanography 45:1025–1050

    Article  Google Scholar 

  5. Rudels B (2009) Arctic ocean circulation. Academic, New York

  6. Boé J, Hall A, Qu X (2009) September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nature Geoscience 2:341–343

    Article  Google Scholar 

  7. Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36. https://doi.org/10.1029/2009GL037820

  8. Strong C, Foster D, Cherkaev E, Eisenman I, Golden KM (2017) On the definition of marginal ice zone width. J Atmospheric Oceanic Technol 34:1565–1584

    Article  Google Scholar 

  9. Rolph RJ, Feltham DL, Schröder D (2020) Changes of the Arctic marginal ice zone during the satellite era. Cryosphere 14:1971–1984

    Article  Google Scholar 

  10. Collins III CO, Rogers WE, Marchenko A, Babanin AV (2015) In situ measurements of an energetic wave event in the Arctic marginal ice zone. Geophys Res Lett 42:1863–1870

    Article  Google Scholar 

  11. Squire VA (2007) Of ocean waves and sea-ice revisited. Cold Regions Sci Technol 49:110–133

    Article  Google Scholar 

  12. Mundy C, Gosselin M, Ehn JK, Belzile C, Poulin M, Alou E, Roy S, Hop H, Lessard S, Papakyriakou TN (2011) Characteristics of two distinct high-light acclimated algal communities during advanced stages of sea ice melt. Polar Biol 34:1869–1886

    Article  Google Scholar 

  13. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, Martinez A, Sullivan MB, Edwards R, Brito BR (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  CAS  PubMed  Google Scholar 

  14. Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA, Donachie SP (2009) Microbial community structure in the North Pacific ocean. ISME J 3:1374–1386

    Article  CAS  PubMed  Google Scholar 

  15. Agogué H, Lamy D, Neal PR, Sogin ML, Herndl GJ (2011) Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol Ecol 20:258–274

    Article  PubMed  Google Scholar 

  16. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PloS One 9:e105592

    Article  PubMed  PubMed Central  Google Scholar 

  17. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  18. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chong J, Liu P, Zhou G, **a J (2020) Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols 15:799–821

    Article  CAS  PubMed  Google Scholar 

  21. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnol 31:814–821

    Article  CAS  Google Scholar 

  22. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MG (2020) PICRUSt2 for prediction of metagenome functions. Nature Biotechnol 38:685–688

    Article  CAS  Google Scholar 

  23. Team R (2015) RStudio: integrated development for R. RStudio, Inc, Boston, MA URL http://www.rstudio.com 42: 14.

  24. Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, Mizrahi I, Pe’er I, Halperin E (2019) FEAST: fast expectation-maximization for microbial source tracking. Nature Methods 16:627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ter Braak CJ, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). www.canoco.com .

  26. Harrell Jr FE, Harrell Jr MFE (2019) Package ‘Hmisc’. CRAN2018 2019: 235-236

  27. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245

    Article  CAS  PubMed  Google Scholar 

  28. **g H, **a X, Suzuki K, Liu H (2013) Vertical profiles of bacteria in the tropical and subarctic oceans revealed by pyrosequencing. PloS One 8:e79423

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dobal-Amador V, Nieto-Cid M, Guerrero-Feijoo E, Hernando-Morales V, Teira E, Varela MM (2016) Vertical stratification of bacterial communities driven by multiple environmental factors in the waters (0–5000 m) off the Galician coast (NW Iberian margin). Deep Sea Res Part I: Oceanographic Res Papers 114:1–11

    Article  CAS  Google Scholar 

  30. Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D'Hondt S (2016) Bacterial diversity and community composition from seasurface to subseafloor. ISME J 10:979–989

    Article  PubMed  Google Scholar 

  31. Nishino S, Kikuchi T, Yamamoto-Kawai M, Kawaguchi Y, Hirawake T, Itoh M (2011) Enhancement/reduction of biological pump depends on ocean circulation in the sea-ice reduction regions of the Arctic Ocean. J Oceanography 67:305–314

    Article  CAS  Google Scholar 

  32. Lalande C, Nöthig EM, Fortier L (2019) Algal export in the Arctic Ocean in times of global warming. Geophys Res Lett 46:5959–5967

    Article  Google Scholar 

  33. Lalande C, Forest A, Barber DG, Gratton Y, Fortier L (2009) Variability in the annual cycle of vertical particulate organic carbon export on Arctic shelves: Contrasting the Laptev Sea, Northern Baffin Bay and the Beaufort Sea. Continental Shelf Res 29:2157–2165

    Article  Google Scholar 

  34. Cai P, Rutgers Van Der Loeff M, Stimac I, Nöthig EM, Lepore K, Moran S (2010) Low export flux of particulate organic carbon in the central Arctic Ocean as revealed by 234Th: 238U disequilibrium. J Geophys Res: Oceans 115. https://doi.org/10.1029/2009JC005595

  35. Cai W-J, Chen L, Chen B, Gao Z, Lee SH, Chen J, Pierrot D, Sullivan K, Wang Y, Hu X (2010) Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 329:556–559

    Article  CAS  PubMed  Google Scholar 

  36. Han D, Ha HK, Hwang CY, Lee BY, Hur H-G, Lee YK (2015) Bacterial communities along stratified water columns at the Chukchi Borderland in the western Arctic Ocean. Deep Sea Res Part II: Topical Stud Oceanogr 120:52–60

    Article  Google Scholar 

  37. Fu Y, MacLeod DM, Rivkin RB, Chen F, Buchan A, Lang AS (2010) High diversity of Rhodobacterales in the subarctic North Atlantic Ocean and gene transfer agent protein expression in isolated strains. Aquatic Microbial Ecol 59:283–293

    Article  Google Scholar 

  38. Raes EJ, Bodrossy L, Van De Kamp J, Bissett A, Ostrowski M, Brown MV, Sow SL, Sloyan B, Waite AM (2018) Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. Proc Natl Acad Sci 115:E8266–E8275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Milici M, Tomasch J, Wos-Oxley ML, Wang H, Jáuregui R, Camarinha-Silva A, Deng Z-L, Plumeier I, Giebel H-A, Wurst M (2016) Low diversity of planktonic bacteria in the tropical ocean. Scientific Reports 6:1–9

    Article  Google Scholar 

  40. Montes T, Guerrero-Feijóo E, Moreira-Coello V, Bode A, Ruiz-Villarreal M, Mouriño-Carballido B, Varela MM (2020) Vertical zonation of bacterial assemblages attributed to physical stratification during the summer relaxation of the coastal upwelling off Galicia (NW Spain). Estuarine, Coastal Shelf Sci 245:106791

    Article  Google Scholar 

  41. Schattenhofer M, Fuchs BM, Amann R, Zubkov MV, Tarran GA, Pernthaler J (2009) Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol 11:2078–2093

    Article  CAS  PubMed  Google Scholar 

  42. Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275

    Article  CAS  PubMed  Google Scholar 

  44. Maccario L, Carpenter SD, Deming JW, Vogel TM, Larose C (2019) Sources and selection of snow-specific microbial communities in a Greenlandic sea ice snow cover. Scientific Reports 9:1–14

    Article  CAS  Google Scholar 

  45. Sørensen HL, Thamdrup B, Jeppesen E, Rysgaard S, Glud RN (2017) Nutrient availability limits biological production in Arctic sea ice melt ponds. Polar Biol 40:1593–1606

    Article  PubMed  PubMed Central  Google Scholar 

  46. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Avcı B, Krüger K, Fuchs BM, Teeling H, Amann RI (2020) Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J 14:1369–1383

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bryant JA, Stewart FJ, Eppley JM, DeLong EF (2012) Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone. Ecology 93:1659–1673

    Article  PubMed  Google Scholar 

  49. Lindh MV, Maillot BM, Shulse CN, Gooday AJ, Amon DJ, Smith CR, Church MJ (2017) From the surface to the deep-sea: bacterial distributions across polymetallic nodule fields in the clarion-clipperton zone of the Pacific Ocean. Front Microbiol 8:1696

    Article  PubMed  PubMed Central  Google Scholar 

  50. Balmonte JP, Teske A, Arnosti C (2018) Structure and function of high Arctic pelagic, particle-associated and benthic bacterial communities. Environ Microbiol 20:2941–2954

    Article  CAS  PubMed  Google Scholar 

  51. Qian P-Y, Wang Y, Lee OO, Lau SC, Yang J, Lafi FF, Al-Suwailem A, Wong TY (2011) Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. ISME J 5:507–518

    Article  CAS  PubMed  Google Scholar 

  52. Hansell DA (2013) Recalcitrant dissolved organic carbon fractions. Ann Rev Mar Sci 5(1):421–445

  53. Herndl GJ, Reinthaler T (2013) Microbial control of the dark end of the biological pump. Nature Geosci 6:718–724

    Article  CAS  Google Scholar 

  54. Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, Masland EDP, Gomez ML (2011) Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1296–1300

    Article  CAS  PubMed  Google Scholar 

  55. Tang K, Yang Y, Lin D, Li S, Zhou W, Han Y, Liu K, Jiao N (2016) Genomic, physiologic, and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water. Scientific Reports 6:35528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Landry Z, Swan BK, Herndl GJ, Stepanauskas R, Giovannoni SJ (2017) SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio 8:e00413–17

  57. Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, Brown M, Jeffries T, Tyson GW, Seymour JR (2019) A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J 13:663–675

    Article  CAS  PubMed  Google Scholar 

  58. Zhang CL, **e W, Martin-Cuadrado A-B, Rodriguez-Valera F (2015) Marine Group II Archaea, potentially important players in the global ocean carbon cycle. Front Microbiol 6:1108

    Article  PubMed  PubMed Central  Google Scholar 

  59. Middelburg JJ (2011) Chemoautotrophy in the ocean. Geophys Res Lett 38(L24604):1–4

Download references

Acknowledgements

The authors wish to express their sincere gratitude to the Director, NCPOR, Ministry of Earth Sciences, for providing the necessary facilities for carrying out this research. This research was a part of the project titled ‘Korea-Arctic Ocean Warming and Response of Ecosystem (K-AWARE, KOPRI, 1525011760)’, funded by the Ministry of Oceans and Fisheries, Korea. The authors also thank Asian Forum for Polar Sciences (AFOPS) for facilitating the Arctic expedition 2019. The authors thank the captain and crew of the IBRV ARAON who were most helpful in all shipboard operations. This is NCPOR contribution number J-84/ 2021-22.

Funding

This work was supported by the Ministry of Earth Sciences, Govt. of India and Ministry of Oceans and Fisheries, Republic of Korea. Grant numbers [K-AWARE, KOPRI, 1525011760]. Authors Puthiya Veettil Vipindas, Siddarthan Venkatachalam, Thajudeen Jabir and Kottekkatu Padinchati Krishnan have received research support from NCPOR, India. Authors Eun ** Yang, Kyoung-Ho Cho, **young Jung and Youngju Lee have received research support from KOPRI, Korea.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Puthiya Veettil Vipindas, Siddarthan Venkatachalam, Thajudeen Jabir, Eun ** Yang, Kyoung-Ho Cho, **young Jung and Youngju Lee. The first draft of the manuscript was written by Puthiya Veettil Vipindas and edited by Kottekkatu Padinchati Krishnan. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kottekkatu Padinchati Krishnan.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

This manuscript does not contain any studies with human participants

Consent to Publish

This manuscript does not contain any studies with human participants

Supplementary Information

ESM 1

(DOC 3945 kb)

ESM 2

(XLS 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vipindas, P.V., Venkatachalam, S., Jabir, T. et al. Water Mass Controlled Vertical Stratification of Bacterial and Archaeal Communities in the Western Arctic Ocean During Summer Sea-Ice Melting. Microb Ecol 85, 1150–1163 (2023). https://doi.org/10.1007/s00248-022-01992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-01992-z

Keywords

Navigation