Log in

Contemporary multimodality non-invasive cardiac imaging protocols for tetralogy of Fallot

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Tetralogy of Fallot is the most prevalent cyanotic congenital heart disease, requiring lifelong multimodality non-invasive cardiac imaging, such as echocardiography, cardiothoracic computed tomography, and cardiac magnetic resonance imaging. As imaging techniques continuously evolve and are gradually integrated into clinical practice, there is a critical need to update multimodality imaging protocols. Over the last two decades, cardiothoracic computed tomography imaging techniques have advanced remarkably, significantly enhancing its role in evaluating patients with tetralogy of Fallot. In this review, we describe contemporary multimodality non-invasive cardiac imaging protocols for tetralogy of Fallot, emphasizing the expanding role of cardiothoracic computed tomography. Additionally, we present standardized reporting forms designed to facilitate the clinical adoption of these protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Apostolopoulou SC, Manginas A, Kelekis NL, Noutsias M (2019) Cardiovascular imaging approach in pre and postoperative tetralogy of Fallot. BMC Cardiovasc Disord 19:7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wise-Faberowski L, Irvin M, Sidell DR et al (2019) Assessment of airway abnormalities in patients with tetralogy of Fallot, pulmonary atresia, and major aortopulmonary collaterals. Cardiol Young 29:610–614

    Article  PubMed  Google Scholar 

  3. Goo HW (2022) Diagnostic imaging for absent pulmonary valve syndrome: an update with an emphasis on cardiothoracic CT. Pediatr Radiol 52:1167–1174

    Article  PubMed  Google Scholar 

  4. Becker AE, Connor M, Anderson RH (1975) Tetralogy of Fallot: a morphometric and geometric study. Am J Cardiol 35:402–412

    Article  CAS  PubMed  Google Scholar 

  5. Santoro G, Marino B, Di Carlo D et al (1994) Echocardiographically guided repair of tetralogy of Fallot. Am J Cardiol 73:808–811

    Article  CAS  PubMed  Google Scholar 

  6. Qureshi AM, Caldarone CA, Romano JC et al (2022) Comparison of management strategies for neonates with symptomatic tetralogy of Fallot and weight < 2.5 kg. J Thorac Cardiovasc Surg 163:192–207e3

    Article  PubMed  Google Scholar 

  7. Motta P, Miller-Hance WC (2012) Transesophageal echocardiography in tetralogy of Fallot. Semin Cardiothorac Vasc Anesth 16:70–87

    Article  PubMed  Google Scholar 

  8. Hong SW, Goo HW, Maeda E et al (2019) User-friendly, vendor-specific guideline for pediatric cardiothoracic computed tomography provided by the Asian Society of Cardiovascular Imaging Congenital Heart Disease Study Group: part 1. Imaging techniques. Korean J Radiol 20:190–204

    Article  PubMed  Google Scholar 

  9. Zucker EJ (2022) Computed tomography in tetralogy of Fallot: pre- and postoperative imaging evaluation. Pediatr Radiol 52:2485–2497

    Article  PubMed  Google Scholar 

  10. Chen BB, Chen SJ, Wu MH et al (2007) EBCT - McGoon ratio a reliable and useful method to predict pulmonary blood glow non-invasively. Chin J Radiol 32:1–8

    Google Scholar 

  11. Feng H, Bian X, Lan Y et al (2020) Tetralogy of Fallot with double aortic arch in an 8-month-old girl: a rare association. Heart Surg Forum 23:E507–E509

    Article  PubMed  Google Scholar 

  12. Ojha V, Pandey NN, Verma M, Kumar S (2020) Partial anomalous pulmonary venous connection in a patient with tetralogy of Fallot: infrequent, but not inconsequential. J Card Surg 35:2025–2026

    Article  PubMed  Google Scholar 

  13. Vastel-Amzallag C, Le Bret E, Paul JF et al (2011) Diagnostic accuracy of dual-source multislice computed tomographic analysis for the preoperative detection of coronary artery anomalies in 100 patients with tetralogy of Fallot. J Thorac Cardiovasc Surg 142:120–126

    Article  PubMed  Google Scholar 

  14. Goo HW (2018) Coronary artery anomalies on preoperative cardiac CT in children with tetralogy of Fallot or Fallot type of double outlet right ventricle: comparison with surgical findings. Int J Cardiovasc Imaging 34:1997–2009

    Article  PubMed  Google Scholar 

  15. Goo HW (2004) Evaluation of the airways in patients with congenital heart disease using multislice CT. J Korean Pediatr Cardiol Soc 8:37–43

    Google Scholar 

  16. Beekman RP, Beek FJ, Meijboom EJ (1997) Usefulness of MRI for the pre-operative evaluation of the pulmonary arteries in tetralogy of Fallot. Magn Reson Imaging 15:1005–1015

    Article  CAS  PubMed  Google Scholar 

  17. Pettersen MD, Du W, Skeens ME, Humes RA (2008) Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children and adolescents: an echocardiographic study. J Am Soc Echocardiogr 21:922–934

    Article  PubMed  Google Scholar 

  18. Lapierre C, Dubois J, Rypens F et al (2016) Tetralogy of Fallot: preoperative assessment with MR and CT imaging. Diagn Interv Imaging 97:531–541

    Article  CAS  PubMed  Google Scholar 

  19. Qureshi AM, Caldarone CA, Wilder TJ (2022) Transcatheter approaches to palliation for tetralogy of Fallot. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 25:48–57

    Article  PubMed  Google Scholar 

  20. Yen KC, Lee YT, Huang JH et al (2021) Impact analysis of systemic-pulmonary arterial shunt creation on patients with tetralogy of Fallot. J Radiol Sci 46:115–121

    Google Scholar 

  21. Decker JA, O’Doherty J, Schoepf UJ et al (2023) Stent imaging on a clinical dual-source photon-counting detector CT system-impact of luminal attenuation and sharp kernels on lumen visibility. Eur Radiol 33:2469–2477

    Article  CAS  PubMed  Google Scholar 

  22. Renella P, Aboulhosn J, Lohan DG et al (2010) Two-dimensional and doppler echocardiography reliably predict severe pulmonary regurgitation as quantified by cardiac magnetic resonance. J Am Soc Echocardiogr 23:880–886

    Article  PubMed  Google Scholar 

  23. Srinivasan C, Sachdeva R, Morrow WR et al (2011) Limitations of standard echocardiographic methods for quantification of right ventricular size and function in children and young adults. J Ultrasound Med 30:487–493

    Article  PubMed  Google Scholar 

  24. Dragulescu A, Grosse-Wortmann L, Fackoury C et al (2011) Echocardiographic assessment of right ventricular volumes after surgical repair of tetralogy of Fallot: clinical validation of a new echocardiographic method. J Am Soc Echocardiogr 24:1191–1198

    Article  PubMed  Google Scholar 

  25. Menting ME, van den Bosch AE, McGhie JS et al (2015) Assessment of ventricular function in adults with repaired tetralogy of fallot using myocardial deformation imaging. Eur Heart J Cardiovasc Imaging 16:1347–1357

    PubMed  Google Scholar 

  26. Bowen DJ, van Berendoncks AM, McGhie JS et al (2021) Multi-plane echocardiographic assessment of right ventricular function in adults with repaired tetralogy of Fallot. Int J Cardiovasc Imagin 37:2905–2915

    Article  Google Scholar 

  27. Roche SL, Grosse-Wortmann L, Friedberg MK et al (2015) Exercise echocardiography demonstrates biventricular systolic dysfunction and reveals decreased left ventricular contractile reserve in children after tetralogy of Fallot repair. J Am Soc Echocardiogr 28:294–301

    Article  PubMed  Google Scholar 

  28. Siripornpitak S, Goo HW (2021) CT and MRI for repaired complex adult congenital heart diseases. Korean J Radiol 22:308–323

    Article  PubMed  Google Scholar 

  29. Goo HW (2019) Computed tomography pulmonary vascular volume ratio can be used to evaluate the effectiveness of pulmonary angioplasty in peripheral pulmonary artery stenosis. Korean J Radiol 20:1422–1430

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen HY, Chang CI, Chen SJ (2011) Huge pseudo-aneurysm of right ventricular outflow tract after patch reconstruction in tetralogy of Fallot. Cardiol Young 21:340

    Article  CAS  PubMed  Google Scholar 

  31. Goo HW (2019) Semiautomatic three-dimensional threshold-based cardiac computed tomography ventricular volumetry in repaired tetralogy of Fallot: comparison with cardiac magnetic resonance imaging. Korean J Radiol 20:102–113

    Article  PubMed  Google Scholar 

  32. Goo HW, Park SH (2023) Partial voxel interpolation to reduce partial volume error of cardiac computed tomography ventricular volumetry in patients with congenital heart disease. Pediatr Radiol 53:2528–2538

    Article  PubMed  Google Scholar 

  33. Goo HW, Park SH (2023) Identification of rapid progression of right ventricular functional measures using three-dimensional cardiac computed tomography after total surgical correction of tetralogy of Fallot. Eur J Radiol 164:110856

    Article  PubMed  Google Scholar 

  34. Goo HW (2019) Changes in right ventricular volume, volume load, and function measured with cardiac computed tomography over the entire time course of tetralogy of Fallot. Korean J Radiol 20:956–966

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hoelscher M, Bonassin F, Oxenius A et al (2020) Right ventricular dilatation in patients with pulmonary regurgitation after repair of tetralogy of Fallot: how fast does it progress? Ann Pediatr Cardiol 13:294–300

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goo HW (2021) Right ventricular mass quantification using cardiac CT and a semiautomatic three-dimensional hybrid segmentation approach: a pilot study. Korean J Radiol 22:901–911

    Article  PubMed  PubMed Central  Google Scholar 

  37. Boutsikou M, Tzifa A (2022) Noninvasive imaging prior to percutaneous pulmonary valve implantation. Hellenic J Cardiol 67:59–65

    Article  PubMed  Google Scholar 

  38. Stout KK, Daniels CJ, Aboulhosn JA et al (2019) 2018 AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation 139:e698–e800

    PubMed  Google Scholar 

  39. Sugeng L, Mor-Avi V, Weinert L et al (2010) Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging 3:10–18

    Article  PubMed  Google Scholar 

  40. Freling HG, van Wijk K, Jaspers K et al (2013) Impact of right ventricular endocardial trabeculae on volumes and function assessed by CMR in patients with tetralogy of Fallot. Int J Cardiovasc Imaging 29:625–631

    Article  PubMed  Google Scholar 

  41. van den Bosch E, Cuypers JAAE, Luijnenburg SE et al (2020) Ventricular response to dobutamine stress cardiac magnetic resonance imaging is associated with adverse outcome during 8-year follow-up in patients with repaired tetralogy of Fallot. Eur Heart J Cardiovasc Imaging 21:1039–1046

    Article  PubMed  Google Scholar 

  42. Steinmetz M, Stumpfig T, Seehase M et al (2021) Impaired exercise tolerance in repaired tetralogy of Fallot is associated with impaired biventricular contractile reserve: an exercise-stress real-time cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 14:e011823

    Article  PubMed  Google Scholar 

  43. Ghonim S, Ernst S, Keegan J et al (2020) Three-dimensional late gadolinium enhancement cardiovascular magnetic resonance predicts inducibility of ventricular tachycardia in adults with repaired tetralogy of Fallot. Circ Arrhythm Electrophysiol 13:e008321

    Article  CAS  PubMed  Google Scholar 

  44. Saengsin K, Lu M, Sleeper L et al (2021) Longitudinal changes in extent of late gadolinium enhancement in repaired tetralogy of Fallot: a retrospective analysis of serial CMRs. J Cardiovasc Magn Reson 23:80

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen CA, Dusenbery SM, Valente AM et al (2016) Myocardial ECV fraction assessed by CMR is associated with type of hemodynamic load and arrhythmia in repaired tetralogy of Fallot. JACC Cardiovasc Imaging 9:1–10

    Article  CAS  PubMed  Google Scholar 

  46. Shiina Y, Taniguchi K, Nagao M et al (2020) The relationship between extracellular volume fraction in symptomatic adults with tetralogy of Fallot and adverse cardiac events. J Cardiol 75:424–431

    Article  PubMed  Google Scholar 

  47. Warmerdam EG, Neijzen RL, Voskuil M et al (2022) Four-dimensional flow CMR in tetralogy of fallot: current perspectives. Br J Radiol 95:20210298

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lu JC, Balasubramanian S, Yu S et al (2019) Reproducibility and agreement of tissue tracking versus feature tracking for strain measurement on cardiac MR images in patients with repaired tetralogy of Fallot. Radiol Cardiothorac Imaging 1:e180005

    Article  PubMed  PubMed Central  Google Scholar 

  49. House AV, Muthurangu V, Spanel AJ et al (2019) Can abbreviated cardiac magnetic resonance imaging adequately support clinical decision making after repair of tetralogy of Fallot? Pediatr Cardiol 40:616–622

    Article  PubMed  Google Scholar 

  50. Srnka CM, Strohacker CM, Balasubramanian S et al (2021) Improving adherence to echocardiogram reporting guidelines in patients with repaired tetralogy of fallot: a quality improvement initiative. Echocardiography 38:596–603

    Article  PubMed  Google Scholar 

  51. Bokma JP, Geva T, Sleeper LA et al (2023) Improved outcomes after pulmonary valve replacement in repaired tetralogy of Fallot. J Am Coll Cardiol 81:2075–2085

    Article  PubMed  Google Scholar 

  52. Hallbergson A, Gauvreau K, Powell AJ, Geva T (2015) Right ventricular remodeling after pulmonary valve replacement: early gains, late losses. Ann Thorac Surg 99:660–666

    Article  PubMed  Google Scholar 

  53. Gursu HA, Varan B, Sade E et al (2016) Analysis of right ventricle function with strain imaging before and after pulmonary valve replacement. Cardiol J 23:195–201

    Article  PubMed  Google Scholar 

  54. Goo HW (2021) Radiation dose, contrast enhancement, image noise and heart rate variability of ECG-gated CT volumetry using 3D threshold-based segmentation: comparison between conventional single scan and dual focused scan methods. Eur J Radiol 137:109606

    Article  PubMed  Google Scholar 

  55. Shiina Y, Inai K, Takahashi T et al (2020) Clinical impact of cardiac computed tomography derived three-dimensional strain for adult congenital heart disease: a pilot study. Int J Cardiovasc Imaging 36:131–140

    Article  PubMed  Google Scholar 

  56. van der Bie J, Sharma SP, van Straten M et al (2023) Photon-counting detector CT in patients pre- and post-transcatheter aortic valve replacement. Radiol Cardiothorac Imaging 27:e220318

    Google Scholar 

  57. Heng EL, Gatzoulis MA, Uebing A et al (2017) Immediate and midterm cardiac remodeling after surgical pulmonary valve replacement in adults with repaired tetralogy of Fallot: a prospective cardiovascular magnetic resonance and clinical study. Circulation 31:1703–1713

    Article  Google Scholar 

  58. Monti CB, Secchi F, Capra D et al (2020) Right ventricular strain in repaired tetralogy of fallot with regards to pulmonary valve replacement. Eur J Radiol 131:109235

    Article  PubMed  Google Scholar 

  59. Yamamura K, Yuen D, Hickey EJ et al (2019) Right ventricular fibrosis is associated with cardiac remodelling after pulmonary valve replacement. Heart 105:855–863

    Article  PubMed  Google Scholar 

  60. Horst KK, Yu L, McCollough CH et al (2023) Potential benefits of photon counting detector computed tomography in pediatric imaging. Br J Radiol 96:20230189

    Article  PubMed  Google Scholar 

  61. Tsai IC, Goo HW (2021) Special report: a 21-year publication analysis of congenital heart CT and MR Articles. Cardiovasc Imaging Asia 5:126–131

    Article  Google Scholar 

Download references

Funding

None

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, resources, writing—original draft preparation, supervision, project administration: H.W.G.; methodology, methodology, validation, investigation, data curation, writing—review and editing: H.W.G, S.C., S.S., H.A.L., B.K.B., M.C.L., Y.M.Z.; methodology, validation, writing—review and editing: Y.J.K. All authors approved the final manuscript.

Corresponding author

Correspondence to Hyun Woo Goo.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goo, H.W., Chen, SJ., Siripornpitak, S. et al. Contemporary multimodality non-invasive cardiac imaging protocols for tetralogy of Fallot. Pediatr Radiol 54, 1075–1092 (2024). https://doi.org/10.1007/s00247-024-05942-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-024-05942-4

Keywords

Navigation