Log in

Obesity Predisposes Anthracycline-Treated Survivors of Childhood and Adolescent Cancers to Subclinical Cardiac Dysfunction

  • Research
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Anthracyclines are effective chemotherapeutics used in approximately 60% of pediatric cancer cases but have a well-documented risk of cardiotoxicity. Existing cardiotoxicity risk calculators do not include cardiovascular risk factors present at the time of diagnosis. The goal of this study is to leverage the advanced sensitivity of strain echocardiography to identify pre-existing risk factors for early subclinical cardiac dysfunction among anthracycline-exposed pediatric patients. We identified 115 pediatric patients with cancer who were treated with an anthracycline between 2013 and 2019. Peak longitudinal left ventricular strain was retroactively calculated on 495 surveillance echocardiograms via the TOMTEC AutoSTRAIN software. Cox proportional hazards models were employed to identify risk factors for abnormal longitudinal strain (> − 16%) following anthracycline treatment. High anthracycline dose (≥ 250 mg/m2 doxorubicin equivalents) and obesity at the time of diagnosis (BMI > 95th percentile-for-age) were both significant predictors of abnormal strain with hazard ratios of 2.79, 95% CI (1.07–7.25), and 3.85, 95% CI (1.42–10.48), respectively. Among pediatric cancer survivors, patients who are obese at the time of diagnosis are at an increased risk of sub-clinical cardiac dysfunction following anthracycline exposure. Future studies should explore the incidence of symptomatic cardiomyopathy 10–15 years post-treatment among patients with early subclinical cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Howlader N et al. (2020) SEER cancer statistics review, 1975–2017

  2. Bhatia S et al (2015) Collaborative research in childhood cancer survivorship: the current landscape. J Clin Oncol 33(27):3055–3064. https://doi.org/10.1200/jco.2014.59.8052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mulrooney DA et al (2020) Major cardiac events for adult survivors of childhood cancer diagnosed between 1970 and 1999: report from the childhood cancer survivor study cohort. BMJ 368:l6794. https://doi.org/10.1136/bmj.l6794

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chow EJ et al (2015) Individual prediction of heart failure among childhood cancer survivors. J Clin Oncol 33(5):394–402. https://doi.org/10.1200/jco.2014.56.1373

    Article  PubMed  Google Scholar 

  5. Chen Y et al (2019) Traditional cardiovascular risk factors and individual prediction of cardiovascular events in childhood cancer survivors. JNCI J Natl Cancer Inst 112(3):256–265. https://doi.org/10.1093/jnci/djz108

    Article  CAS  Google Scholar 

  6. Jacobs DR Jr et al (2022) Childhood cardiovascular risk factors and adult cardiovascular events. N Engl J Med 386(20):1877–1888. https://doi.org/10.1056/NEJMoa2109191

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qiu S et al (2021) Risk factors for anthracycline-induced cardiotoxicity. Front Cardiovasc Med 8:736854. https://doi.org/10.3389/fcvm.2021.736854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ehrhardt MJ et al (2023) Systematic review and updated recommendations for cardiomyopathy surveillance for survivors of childhood, adolescent, and young adult cancer from the international late effects of childhood cancer guideline harmonization group. Lancet Oncol 24(3):e108–e120. https://doi.org/10.1016/S1470-2045(23)00012-8

    Article  PubMed  Google Scholar 

  9. Thavendiranathan P et al (2013) Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol 61(1):77–84. https://doi.org/10.1016/j.jacc.2012.09.035

    Article  PubMed  Google Scholar 

  10. Dandel M et al (2009) Strain and strain rate imaging by echocardiography—basic concepts and clinical applicability. Curr Cardiol Rev 5(2):133–148. https://doi.org/10.2174/157340309788166642

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thavendiranathan P et al (2014) Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol 63:2751–68. https://doi.org/10.1016/j.jacc.2014.01.073

    Article  PubMed  Google Scholar 

  12. Mignot A et al (2010) Global longitudinal strain as a major predictor of cardiac events in patients with depressed left ventricular function: a multicenter study. J Am Soc Echocardiogr 23(10):1019–1024. https://doi.org/10.1016/j.echo.2010.07.019

    Article  PubMed  Google Scholar 

  13. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100(21):1673–1680. https://doi.org/10.1136/heartjnl-2014-305538

    Article  PubMed  Google Scholar 

  14. Biering-Sørensen T et al (2017) Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population: the Copenhagen city heart study. Circ Cardiovasc Imaging. https://doi.org/10.1161/circimaging.116.005521

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lyon AR et al (2022) ESC Guidelines on cardio-oncology developed in collaboration with the European hematology association (EHA), the European society for therapeutic radiology and oncology (ESTRO) and the international cardio-oncology society (IC-OS): developed by the task force on cardio-oncology of the European society of cardiology (ESC). Eur Heart J. https://doi.org/10.1093/eurheartj/ehac244

    Article  PubMed  Google Scholar 

  16. Park JJ et al (2018) Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol 71(18):1947–1957. https://doi.org/10.1016/j.jacc.2018.02.064

    Article  PubMed  Google Scholar 

  17. Haugaa KH, Dejgaard LA (2018) Global longitudinal strain: ready for clinical use and guideline implementation. J Am Coll Cardiol 71(18):1958–1959. https://doi.org/10.1016/j.jacc.2018.03.015

    Article  PubMed  Google Scholar 

  18. Armstrong GT et al (2015) Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude lifetime cohort study. J Am Coll Cardiol 65(23):2511–22. https://doi.org/10.1016/j.jacc.2015.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feijen EAM et al (2019) Derivation of anthracycline and anthraquinone equivalence ratios to doxorubicin for late-onset cardiotoxicity. JAMA Oncol 5(6):864–871. https://doi.org/10.1001/jamaoncol.2018.6634

    Article  PubMed  PubMed Central  Google Scholar 

  20. Children’s oncology group (2018) Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers, Version 5.0. Monrovia, CA: Children’s Oncology Group

  21. Kuczmarski RJ et al (2000) CDC growth charts for the United States: methods and development. Vital Health Stat 11(246):1–190

    Google Scholar 

  22. Ogden CL, Flegal KM (2010) Changes in terminology for childhood overweight and obesity. Natl Health Stat Rep 25:1–5

    Google Scholar 

  23. Liljequist D, Elfving B, Skavberg Roaldsen K (2019) Intraclass correlation—a discussion and demonstration of basic features. PLoS ONE 14(7):e0219854. https://doi.org/10.1371/journal.pone.0219854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kawakami H et al (2021) Feasibility, reproducibility, and clinical implications of the novel fully automated assessment for global longitudinal strain. J Am Soc Echocardiogr 34(2):136-145.e2. https://doi.org/10.1016/j.echo.2020.09.011

    Article  PubMed  Google Scholar 

  25. Yingchoncharoen T et al (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26(2):185–191. https://doi.org/10.1016/j.echo.2012.10.008

    Article  PubMed  Google Scholar 

  26. Oeffinger KC et al (2006) Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 355(15):1572–1582. https://doi.org/10.1056/NEJMsa060185

    Article  CAS  PubMed  Google Scholar 

  27. Ogden C, Carroll M (2015) Prevalence of obesity among children and adolescents: United States, trends 1963–1965 Through 2007–2008

  28. Lange JS et al (2021) Longitudinal trends in body mass index before and during the COVID-19 pandemic among persons aged 2–19 years—United States, 2018–2020. MMWR Morb Mortal Wkly Rep 70:1278–1283. https://doi.org/10.15585/mmwr.mm7037a3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rogers PC et al (2005) Obesity in pediatric oncology. Pediatr Blood Cancer 45(7):881–891. https://doi.org/10.1002/pbc.20451

    Article  PubMed  Google Scholar 

  30. Ness KK et al (2009) Predictors of inactive lifestyle among adult survivors of childhood cancer. Cancer 115(9):1984–1994. https://doi.org/10.1002/cncr.24209

    Article  PubMed  Google Scholar 

  31. Berkman AM, Lakoski SG (2015) Treatment, behavioral, and psychosocial components of cardiovascular disease risk among survivors of childhood and young adult cancer. J Am Heart Assoc. https://doi.org/10.1161/jaha.115.001891

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chow EJ et al (2022) Underdiagnosis and undertreatment of modifiable cardiovascular risk factors among survivors of childhood cancer. J Am Heart Assoc 11(12):e024735. https://doi.org/10.1161/JAHA.121.024735

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ali N et al (2023) Cardiovascular and thyroid late effects in pediatric patients with Hodgkin lymphoma treated with ABVD protocol. J Pediatr Hematol Oncol 45(4):e455–e463. https://doi.org/10.1097/mph.0000000000002638

    Article  CAS  PubMed  Google Scholar 

  34. Armstrong GT et al (2013) Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol 31(29):3673–3680. https://doi.org/10.1200/jco.2013.49.3205

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gilchrist SC et al (2019) Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American heart association. Circulation 139(21):e997–e1012. https://doi.org/10.1161/CIR.0000000000000679

    Article  PubMed  PubMed Central  Google Scholar 

  36. Leerink JM et al (2021) Refining the 10-year prediction of left ventricular systolic dysfunction in long-term survivors of childhood cancer. JACC CardioOncol 3:62–72. https://doi.org/10.1016/j.jaccao.2020.11.013

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cardinale D et al (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131(22):1981–1988. https://doi.org/10.1161/CIRCULATIONAHA.114.013777

    Article  CAS  PubMed  Google Scholar 

  38. Brann A et al (2023) Global longitudinal strain predicts clinical outcomes in patients with heart failure with preserved ejection fraction. Eur J Heart Fail 25(10):1755–1765. https://doi.org/10.1002/ejhf.2947

    Article  PubMed  Google Scholar 

  39. Adamo L et al (2017) Abnormal global longitudinal strain predicts future deterioration of left ventricular function in heart failure patients with a recovered left ventricular ejection fraction. Circ Heart Fail. https://doi.org/10.1161/circheartfailure.116.003788

    Article  PubMed  PubMed Central  Google Scholar 

  40. Collier P, Phelan D, Klein A (2017) A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol 69(8):1043–1056. https://doi.org/10.1016/j.jacc.2016.12.012

    Article  PubMed  Google Scholar 

  41. Sachdeva R et al (2021) Challenges associated with retrospective analysis of left ventricular function using clinical echocardiograms from a multicenter research study. Echocardiography 38(2):296–303. https://doi.org/10.1111/echo.14983

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thavendiranathan P et al (2018) Single versus standard multiview assessment of global longitudinal strain for the diagnosis of cardiotoxicity during cancer therapy. JACC Cardiovasc Imaging 11(8):1109–1118. https://doi.org/10.1016/j.jcmg.2018.03.003

    Article  PubMed  Google Scholar 

  43. Alenezi F et al (2019) Left ventricular global longitudinal strain can reliably be measured from a single apical four-chamber view in patients with heart failure. J Am Soc Echocardiogr 32(2):317–318. https://doi.org/10.1016/j.echo.2018.10.009

    Article  PubMed  Google Scholar 

Download references

Funding

IAG is supported by the National Institutes of Health TL1-TR002555. AB is supported by the National Institutes of Health R38-HL143612 and Duke Pediatric Research Scholars. MER and MATH are supported by the National Institutes of Health P30 CA016672 and Cancer Prevention Research Institute (IIRCCA RP108166). National Institutes of Health (K08-HL136839 and R01-HL160654), Doris Duke Charitable Foundation (CSDA-2020098), John Taylor Babbitt Foundation, The Hartwell Foundation, Additional Ventures, Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ian A. George, Andrew P. Landstrom and Andrew W. McCrary. The first draft of the manuscript was written by Ian A. George and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Andrew W. McCrary or Andrew P. Landstrom.

Ethics declarations

Competing Interests

There are no competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3208 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, I.A., Souder, B., Berkman, A. et al. Obesity Predisposes Anthracycline-Treated Survivors of Childhood and Adolescent Cancers to Subclinical Cardiac Dysfunction. Pediatr Cardiol (2024). https://doi.org/10.1007/s00246-024-03423-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00246-024-03423-x

Keywords

Navigation