Log in

Generalized Penalty Method for Elliptic Variational–Hemivariational Inequalities

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider an elliptic variational–hemivariational inequality with constraints in a reflexive Banach space, denoted \(\mathcal{P}\), to which we associate a sequence of inequalities \(\{\mathcal{P}_n\}\). For each \(n\in \mathbb {N}\), \(\mathcal{P}_n\) is a variational–hemivariational inequality without constraints, governed by a penalty parameter \(\lambda _n\) and an operator \(P_n\). Such inequalities are more general than the penalty inequalities usually considered in literature which are constructed by using a fixed penalty operator associated to the set of constraints of \(\mathcal{P}\). We provide the unique solvability of inequality \(\mathcal{P}_n\). Then, under appropriate conditions on operators \(P_n\), we state and prove the convergence of the solution of \(\mathcal{P}_n\) to the solution of \(\mathcal{P}\). This convergence result extends the results previously obtained in the literature. Its generality allows us to apply it in various situations which we present as examples and particular cases. Finally, we consider a variational–hemivariational inequality with unilateral constraints which arises in Contact Mechanics. We illustrate the applicability of our abstract convergence result in the study of this inequality and provide the corresponding mechanical interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems. Wiley, Chichester (1984)

    MATH  Google Scholar 

  2. Brézis, H.: Problèmes unilatéraux. J. Math. Pures Appl. 51, 1–168 (1972)

    MathSciNet  MATH  Google Scholar 

  3. Capatina, A.: Variational Inequalities and Frictional Contact Problems. Springer, New York (2014)

    Book  Google Scholar 

  4. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983)

    MATH  Google Scholar 

  5. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic/Plenum Publishers, Boston (2003)

    Book  Google Scholar 

  6. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic/Plenum Publishers, Boston (2003)

    Book  Google Scholar 

  7. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  8. Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  9. Han, W.: Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics. Mathe. Mech. Solids. 23, 279–293 (2018)

    Article  MathSciNet  Google Scholar 

  10. Han, W., Sofonea, M.: Numerical analysis of hemivariational inequalities in contact mechanics. Acta Numer., to appear

  11. Han, W., Migórski, S., Sofonea, M.: A class of variational-hemivariational inequalities with applications to frictional contact problems. SIAM J. Math. Anal. 46, 3891–3912 (2014)

    Article  MathSciNet  Google Scholar 

  12. Han, W., Sofonea, M., Barboteu, M.: Numerical analysis of elliptic hemivariational inequalities. SIAM J. Numer. Anal. 55, 640–663 (2017)

    Article  MathSciNet  Google Scholar 

  13. Han, W., Sofonea, M., Danan, D.: Numerical analysis of stationary variational-hemivariational inequalities. Numer. Math. 139, 563–592 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hu, R., et al.: Equivalence results of well-posedness for split variational-hemivariational inequalities. J. Nonlinear Convex Anal., to appear

  15. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)

    Book  Google Scholar 

  16. Lu, J., **ao, Y.B., Huang, N.J.: A Stackelberg quasi-equilibrium problem via quasi-variational inequalities. Carpathian J. Math. 34, 355–362 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Li, W., et al.: Existence and stability for a generalized differential mixed quasi-variational inequality. Carpathian J. Math. 34, 347–354 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Springer, New York (2013)

    Book  Google Scholar 

  19. Migórski, S., Ochal, A., Sofonea, M.: A class of variational-hemivariational inequalities in reflexive Banach spaces. J. Elast. 12, 151–178 (2017)

    Article  MathSciNet  Google Scholar 

  20. Migórski, S., Zeng, S.D.: Penalty and regularization method for variationalhemivariational inequalities with application to frictional contact. Z. Angew. Math. Phys. 98, 1503–1520 (2018)

    Article  Google Scholar 

  21. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker Inc., New York (1995)

    MATH  Google Scholar 

  22. Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Book  Google Scholar 

  23. Peng, Z., Kunish, K.: Optimal control of elliptic variational-hemivariational inequalities. J. Optim. Theory Appl. 178, 1–25 (2018)

    Article  MathSciNet  Google Scholar 

  24. Shu, Q.Y., Hu, R., **ao, Y.B.: Metric characterizations for well-posedness of split hemivariational inequalities. J. Ineq. Appl. 2018, 190 (2018). https://doi.org/10.1186/s13660-018-1761-4

    Article  MathSciNet  Google Scholar 

  25. Sofonea, M.: A nonsmooth static frictionless contact problem with locking materials. Anal. Appl. 6, 851–874 (2018)

    Article  MathSciNet  Google Scholar 

  26. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  27. Sofonea, M., Migórski, S.: A class of history-dependent variational-hemivariational inequalities. Nonlinear Differ. Equ. Appl. 38, 23 (2016). https://doi.org/10.1007/s00030-016-0391-0

    Article  MATH  Google Scholar 

  28. Sofonea, M., Migórski, S.: Variational-Hemivariational Inequalities with Applications, Pure and Applied Mathematics. Chapman & Hall/CRC Press, Boca Raton-London (2018)

    MATH  Google Scholar 

  29. Sofonea, M., Pătrulescu, F.: Penalization of history-dependent variational inequalities. Eur. J. Appl. Math. 25, 155–176 (2014)

    Article  MathSciNet  Google Scholar 

  30. Sofonea, M., Matei, A., **ao, Y.B.: Optimal control for a class of mixed variational problems, submitted

  31. Sofonea, M., Migórski, S., Han, W.: A penalty method for history-dependent variational-hemivariational inequalities. Comput. Math. Appl. 75, 2561–2573 (2018)

    Article  MathSciNet  Google Scholar 

  32. Sofonea, M., **ao, Y.B.: Fully history-dependent quasivariational inequalities in contact mechanics. Appl. Anal. 95, 2464–2484 (2016)

    Article  MathSciNet  Google Scholar 

  33. Sofonea, M., **ao, Y.B.: Boundary optimal control of a nonsmooth frictionless contact problem. Comput. Math. Appl. (2019). https://doi.org/10.1016/j.camwa.2019.02.027

    Article  MathSciNet  MATH  Google Scholar 

  34. Sofonea, M., **ao, Y.B., Couderc, M.: Optimization problems for elastic contact models with unilateral constraints. Z. Angew. Math. Phys. 70, 1 (2019). https://doi.org/10.1007/s000033-018-1046-2

    Article  MathSciNet  MATH  Google Scholar 

  35. Sofonea, M., **ao, Y.B., Couderc, M.: Optimization problems for a viscoelastic frictional contact problem with unilateral constraints, submitted

  36. Wang, Y.M., et al.: Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems. J. Nonlinear Sci. Appl. 9, 1178–1192 (2016)

    Article  MathSciNet  Google Scholar 

  37. **ao, Y.B., Huang, N.J.: Browder-Tikhonov regularization for a class of evolution second order hemivariational inequalities. J. Glob. Optim. 45, 371–388 (2009)

    Article  MathSciNet  Google Scholar 

  38. **ao, Y.B., Huang, N.J., Lu, J.: A system of time-dependent hemivariational inequalities with Volterra integral terms. J. Optim. Theory Appl. 165, 837–853 (2015)

    Article  MathSciNet  Google Scholar 

  39. **ao, Y.B., Sofonea, M.: On the optimal control of variational-hemivariational inequalities. J. Math. Anal. Appl, https://doi.org/10.1016/j.jmaa.2019.02.046, to appear

  40. **ao, Y.B., Yang, X.M., Huang, N.J.: Some equivalence results for well-posedness of hemivariational inequalities. J. Glob. Optim. 61, 789–802 (2015)

    Article  MathSciNet  Google Scholar 

  41. Zeng, B., Liu, Z., Migórski, S.: On convergence of solutions to variational-hemivariational inequalities. Z. Angew. Math. Phys. (2018). https://doi.org/10.1007/s00033-018-0980-3

  42. Zeng, S.D., Migórski, S.: Noncoercive hyperbolic variational inequalities with applications to contact mechanics. J. Math. Anal. Appl. 455, 619–637 (2017)

    Article  MathSciNet  Google Scholar 

  43. Zeidler, E.: Nonlinear Functional Analysis and Applications II A/B. Springer, New York (1990)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (11771067), the Applied Basic Project of Sichuan Province (2019YJ0204) and the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No 823731 CONMECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-bin **ao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, Yb., Sofonea, M. Generalized Penalty Method for Elliptic Variational–Hemivariational Inequalities. Appl Math Optim 83, 789–812 (2021). https://doi.org/10.1007/s00245-019-09563-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09563-4

Keywords

Mathematics Subject Classification

Navigation