Log in

Computational Identification and Evolutionary Relationships of the MicroRNA Gene Cluster miR-71/2 in Protostomes

  • Letter to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small noncoding RNA molecules which are processed into ~20–24 nt molecules that can regulate the gene expression post-transcriptionally. MiRNA gene clusters have been identified in a range of species, where in miRNAs are often processed from polycistronic transcripts. In this study, a computational approach is used to investigate the extent of evolutionary conservation of the miR-71/2 cluster in animals, and to identify novel miRNAs in the miRNA cluster miR-71/2. The miR-71/2 cluster, consisting of copies of the miR-71 and miR-2 (including miR-13) families, was found to be Protostome-specific. Although, this cluster is highly conserved across the Protostomia, the miR-2 family is completely absent from the Deuterostomia species, while miR-71 is absent from the Vertebrata and Urochordata. The evolutionary conservation and clustering propensity of the miR-71/2 family across the Protostomes could indicate the common functional roles across the member species of the Protostomia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

miRNA:

microRNA

References

  • Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697

    Article  CAS  PubMed  Google Scholar 

  • Ayala FJ, Rzhetsky A (1998) Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proc Natl Acad Sci USA 95:606

    Article  CAS  PubMed  Google Scholar 

  • Berezikov E, Cuppen E, Plasterk RH (2006) Approaches to microRNA discovery. Nat Genet 38(Suppl):S2

    Article  CAS  PubMed  Google Scholar 

  • Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, Mashiyama ST, Al-Lazikani B, Andrade LF, Ashton PD, Aslett MA, Bartholomeu DC, Blandin G, Caffrey CR, Coghlan A, Coulson R, Day TA, Delcher A, DeMarco R, Djikeng A, Eyre T, Gamble JA, Ghedin E, Gu Y, Hertz-Fowler C, Hirai H, Hirai Y, Houston R, Ivens A, Johnston DA, Lacerda D, Macedo CD, McVeigh P, Ning Z, Oliveira G, Overington JP, Parkhill J, Pertea M, Pierce RJ, Protasio AV, Quail MA, Rajandream MA, Rogers J, Sajid M, Salzberg SL, Stanke M, Tivey AR, White O, Williams DL, Wortman J, Wu W, Zamanian M, Zerlotini A, Fraser-Liggett CM, Barrell BG, El-Sayed NM (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460:352

    Article  CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175

    Article  CAS  PubMed  Google Scholar 

  • Chopra VS (2011) Chromosomal organization at the level of gene complexes. Cell Mol Life Sci 68:977

    Article  CAS  PubMed  Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, Bauer DJ, Caceres CE, Carmel L, Casola C, Choi JH, Detter JC, Dong Q, Dusheyko S, Eads BD, Frohlich T, Geiler-Samerotte KA, Gerlach D, Hatcher P, Jogdeo S, Krijgsveld J, Kriventseva EV, Kultz D, Laforsch C, Lindquist E, Lopez J, Manak JR, Muller J, Pangilinan J, Patwardhan RP, Pitluck S, Pritham EJ, Rechtsteiner A, Rho M, Rogozin IB, Sakarya O, Salamov A, Schaack S, Shapiro H, Shiga Y, Skalitzky C, Smith Z, Souvorov A, Sung W, Tang Z, Tsuchiya D, Tu H, Vos H, Wang M, Wolf YI, Yamagata H, Yamada T, Ye Y, Shaw JR, Andrews J, Crease TJ, Tang H, Lucas SM, Robertson HM, Bork P, Koonin EV, Zdobnov EM, Grigoriev IV, Lynch M, Boore JL (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555

    Article  CAS  PubMed  Google Scholar 

  • Consortium IAG (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8:e1000313

    Article  Google Scholar 

  • Consortium TSjGSaFA (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460:345

    Article  Google Scholar 

  • de Souza Gomes M, Muniyappa MK, Carvalho SG, Guerra-Sa R, Spillane C (2011) Genome-wide identification of novel microRNAs and their target genes in the human parasite Schistosoma mansoni. Genomics 98:96

    Article  Google Scholar 

  • Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386

    Article  CAS  PubMed  Google Scholar 

  • Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37:D136

    Article  CAS  PubMed  Google Scholar 

  • Hofacker IL (2009) RNA secondary structure analysis using the Vienna RNA package. Curr Protoc Bioinformatics Chapter 12:Unit12 2

    Google Scholar 

  • Huang J, Hao P, Chen H, Hu W, Yan Q, Liu F, Han ZG (2009) Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. PLoS ONE 4:e8206

    Article  PubMed  Google Scholar 

  • Huang Y, Zou Q, Wang SP, Tang SM, Zhang GZ, Shen XJ (2010) The discovery approaches and detection methods of microRNAs. Mol Biol Rep 38(6):4125–4135

    Article  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152

    Article  CAS  PubMed  Google Scholar 

  • Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, Butler R, Campbell KS, Christophides GK, Christley S, Dialynas E, Hammond M, Hill CA, Konopinski N, Lobo NF, MacCallum RM, Madey G, Megy K, Meyer J, Redmond S, Severson DW, Stinson EO, Topalis P, Birney E, Gelbart WM, Kafatos FC, Louis C, Collins FH (2009) VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Res 37:D583

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xu J, Yang D, Tan X, Wang H (2010) Computational approaches for microRNA studies: a review. Mamm Genome 21:1

    Article  CAS  PubMed  Google Scholar 

  • Marco A, Hui JH, Ronshaugen M, Griffiths-Jones S (2010) Functional shifts in insect microRNA evolution. Genome Biol Evol 2:686

    PubMed  Google Scholar 

  • Marco A, Hooks K, Griffiths-Jones S (2012) Evolution and function of the extended miR-2 microRNA family. RNA Biol 9:242

    Article  CAS  PubMed  Google Scholar 

  • Palakodeti D, Smielewska M, Graveley BR (2006) MicroRNAs from the Planarian Schmidtea mediterranea: a model system for stem cell biology. RNA 12:1640

    Article  CAS  PubMed  Google Scholar 

  • Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, De Silva N, Velarde GS, Anderson TJ, Clark RC, Davidson C, Dillon GP, Holroyd NE, LoVerde PT, Lloyd C, McQuillan J, Oliveira G, Otto TD, Parker-Manuel SJ, Quail MA, Wilson RA, Zerlotini A, Dunne DW, Berriman M (2012) A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 6:e1455

    Article  CAS  PubMed  Google Scholar 

  • Saini HK, Enright AJ, Griffiths-Jones S (2008) Annotation of mammalian primary microRNAs. BMC Genomics 9:564

    Article  PubMed  Google Scholar 

  • **ong N, Huang J, Zhang Z, **ong J, Liu X, Jia M, Wang F, Chen C, Cao X, Liang Z, Sun S, Lin Z, Wang T (2009) Stereotaxical infusion of rotenone: a reliable rodent model for Parkinson’s disease. PLoS ONE 4:e7878

    Article  PubMed  Google Scholar 

  • Yook K, Harris TW, Bieri T, Cabunoc A, Chan J, Chen WJ, Davis P, de la Cruz N, Duong A, Fang R, Ganesan U, Grove C, Howe K, Kadam S, Kishore R, Lee R, Li Y, Muller HM, Nakamura C, Nash B, Ozersky P, Paulini M, Raciti D, Rangarajan A, Schindelman G, Shi X, Schwarz EM, Ann Tuli M, Van Auken K, Wang D, Wang X, Williams G, Hodgkin J, Berriman M, Durbin R, Kersey P, Spieth J, Stein L, Sternberg PW (2012) WormBase 2012: more genomes, more data, new website. Nucleic Acids Res 40:D735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CS and MTAD thank the support of Science Foundation Ireland grants 02/IN.1/B49 and 08/IN.1/B1931. GMS was supported by The Brazilian Federal Agency for Support and Evaluation of Graduate Education (Capes Foundation—Scholarship Proc. no. 1495-10-0) and FAPEMIG (CBB 2935/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Spillane.

Additional information

Matheus de Souza Gomes and Mark T. A. Donoghue contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza Gomes, M., Donoghue, M.T.A., Muniyappa, M. et al. Computational Identification and Evolutionary Relationships of the MicroRNA Gene Cluster miR-71/2 in Protostomes. J Mol Evol 76, 353–358 (2013). https://doi.org/10.1007/s00239-013-9563-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9563-2

Keywords

Navigation