Log in

Sodium-dependent Potassium Channels in Leech P Neurons

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

In leech P neurons the inhibition of the Na+-K+ pump by ouabain or omission of bath K+ leaves the membrane potential unaffected for a prolonged period or even induces a marked membrane hyperpolarization, although the concentration gradients for K+ and Na+ are attenuated substantially. As shown previously, this stabilization of the membrane potential is caused by an increase in the K+ conductance of the plasma membrane, which compensates for the reduction of the K+ gradient. The data presented here strongly suggest that the increased K+ conductance is due to Na+-activated K+ (KNa) channels. Specifically, an increase in the cytosolic Na+ concentration ([Na+]i) was paralleled by a membrane hyperpolarization, a decrease in the input resistance (Rin) of the cells, and by the occurrence of an outwardly directed membrane current. The relationship between Rin and [Na+]i followed a simple model in which the Rin decrease was attributed to K+ channels that are activated by the binding of three Na+ ions, with half-maximal activation at [Na+]i between 45 and 70 mM. At maximum channel activation, Rin was reduced by more than 90%, suggesting a significant contribution of the KNa channels to the physiological functioning of the cells, although evidence for such a contribution is still lacking. Injection experiments showed that the KNa channels in leech P neurons are also activated by Li+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ammann D. 1986. Ion sensitive microelectrodes. Springer, Berlin, Germany

    Google Scholar 

  • Baylor D.A., Nicholls J.G. 1969. After-effects of nerve impulses on signalling in the central nervous system of the leech. J. Physiol. 203:571–589

    CAS  PubMed  Google Scholar 

  • Bhattacharjee A., Joiner W.J., Wu M., Yang Y., Sigworth F.J., Kaczmarek L.K. 2003. Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J. Neurosci. 23:11681–11691

    CAS  PubMed  Google Scholar 

  • Bhattacharjee A., von Hehn C.A., Mei X., Kaczmarek L.K. 2005. Localization of the Na(+)-activated K(+) channel Slick in the rat central nervous system. J. Comp. Neurol. 484:80–92

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee A., Kaczmarek L.K. 2005. For K+ channels, Na+ is the new Ca2+. Trends Neurosci. 28:422–428

    Article  CAS  PubMed  Google Scholar 

  • Deitmer J.W., Schlue W.-R. 1981. Measurements of the intracellular potassium activity of Retzius cells in the leech central nervous system. J. exp. Biol. 91:87–101

    CAS  Google Scholar 

  • Deitmer J.W., Schlue W.-R. 1983. Intracellular Na+ and Ca2+ in leech Retzius neurones during inhibition of the Na+-K+ pump. Pfluegers Arch. 397:195–201

    Article  CAS  Google Scholar 

  • Deitmer J.W., Schlue W.-R. 1987. The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech. J. Physiol. 388:261–283

    CAS  PubMed  Google Scholar 

  • Dierkes P.W., Hochstrate P., Schlue W.-R. 1997. Voltage-dependent Ca2+ influx into identified leech neurones. Brain Res. 746:285–293

    Article  CAS  PubMed  Google Scholar 

  • Dierkes, P.W., Wüsten, H.J., Klees, G., Müller, A., Hochstrate, P. 2005. Ionic mechanism of ouabain-induced swelling of leech Retzius neurons. Pfluegers Arch., in press

  • Dierkes P.W., Schlue W.-R. 2005. Ca2+ influx into identified leech neurons induced by 5-hydroxytryptamine. J. Neurobiol. 62:106–120

    Article  CAS  PubMed  Google Scholar 

  • Dryer S.E. 1994. Na+-activated K+ channels: a new family of large-conductance ion channels. Trends Neurosci. 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Dryer S.E. 2003. Molecular identification of the Na+-activated K+ channel. Neuron 37:727–728

    Article  CAS  PubMed  Google Scholar 

  • Egan T.M., Dagan D., Kupper J., Levitan I.B. 1992. Na+-activated K+ channels are widely distributed in rat CNS and in Xenopus oocytes. Brain Res. 584:319–321

    Article  CAS  PubMed  Google Scholar 

  • Elkins T., Ganetzky B., Wu C.F. 1986. A Drosophila mutation that eliminates a calcium-dependent potassium current. Proc. Natl. Acad. Sci. USA 83:8415–8419

    CAS  PubMed  Google Scholar 

  • Frey G., Hanke W., Schlue W.-R. 1993. ATP-inhibited and Ca2+-dependent K+ channels in the soma membrane of cultured leech Retzius neurons. J. Membrane Biol. 134:131–142

    Article  CAS  Google Scholar 

  • Frey G., Lucht M., Schlue W.-R. 1998. ATP-inhibited K+ channels and the membrane potential of identified leech neurons. Brain Res. 798:247–253

    Article  CAS  PubMed  Google Scholar 

  • Gerard E., Hochstrate P., Schlue W.-R. 1999. Hyperpolarization-activated membrane current in leech P neurones. In: N. Elsner U. Eysel, eds., Gottingen Neurobiology Report. Vol II, Thieme, Stuttgart, p 719

  • Glitsch H.G. 2001. Electrophysiology of the sodium-potassium ATPase in cardiac cells. Physiol. Rev. 81:1791–1826

    CAS  PubMed  Google Scholar 

  • Grynkiewicz G., Poenie M., Tsien R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Hartung K. 1985. Potentiation of a transient outward current by Na+ influx in crayfish neurones. Pfluegers Arch. 404:41–44

    CAS  Google Scholar 

  • Hille B. 2001. Ion Channels of Excitable Membranes. Sinauer Associates, Inc., Sunderland, MA, USA

    Google Scholar 

  • Hochstrate P., Schlue W.-R. 1994. Ca2+ influx into leech glial cells and neurones caused by pharmacologically distinct glutamate receptors. Glia 12:268–280

    CAS  PubMed  Google Scholar 

  • Jansen J.K.S., Nicholls J.G. 1973. Conductance changes, an electrogenic pump and the hyperpolarization of leech neurones following impulses. J. Physiol. 229:635–655

    CAS  PubMed  Google Scholar 

  • Kennedy H.J., Thomas R.C. 1996. Effects of injecting calcium-buffer solution on [Ca2+]i in voltage-clamped snail neurons. Biophys. J. 70:2120–2130

    CAS  PubMed  Google Scholar 

  • Kilb W., Schlue W.-R. 1999. Mechanism of the kainate-induced intracellular acidification in leech Retzius neurons. Brain Res. 824:168–182

    Article  CAS  PubMed  Google Scholar 

  • Kiss T., Fujisawa Y., Laszlo Z., Muneoka Y. 2000. Mytilus inhibitory peptide (MIP) induces aNa+-activated K+-current in snail neurons. Acta Biol. Hung. 51:133–145

    CAS  PubMed  Google Scholar 

  • Liu Q.Y., Schaffner A.E., Barker J.L. 1998. Kainate induces an intracellular Na+-activated K+ current in cultured embryonic rat hippocampal neurones. J. Physiol. 510:721–734

    CAS  PubMed  Google Scholar 

  • Macagno E.R. 1980. Number and distribution of neurons in leech segmental ganglia. J. Comp. Neurol. 190:283–302

    Article  CAS  PubMed  Google Scholar 

  • Martin A.R., Dryer S.E. 1989. Potassium channels activated by sodium. Quart. J. Exp. Physiol. 74:1033–1041

    CAS  Google Scholar 

  • McCormick D.A., Pape H.C. 1990. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol. 431:291–318

    CAS  PubMed  Google Scholar 

  • Pape H.C. 1996. Queer current and pacemaker: the hyperpolarization-activated cation currents in neurons. Annu. Rev. Physiol. 58:299–327

    Article  CAS  PubMed  Google Scholar 

  • Partridge L.D., Thomas R.C. 1974. Effect of intracellular lithium on snail neurones. Nature 249:578–580

    Article  CAS  PubMed  Google Scholar 

  • Partridge L.D., Thomas R.C. 1976. The effects of lithium and sodium on the potassium conductance of snail neurones. J. Physiol. 254:551–563

    CAS  PubMed  Google Scholar 

  • Rose C.R. 2002. Na+ signals at central synapses. Neuroscientist 8:532–539

    CAS  PubMed  Google Scholar 

  • Schlue W.-R. 1991. Effects of ouabain on intracellular ion activities of sensory neurons of the leech central nervous system. J. Neurophysiol. 65:736–746

    CAS  PubMed  Google Scholar 

  • Schlue W.-R., Deitmer J.W. 1980. Extracellular potassium in neuropile and nerve cell body region of the leech central nervous system. J. Exp. Biol. 87:23–43

    CAS  PubMed  Google Scholar 

  • Schlue W.-R., Deitmer J.W. 1984. Potassium distribution and membrane potential of sensory neurons in the leech nervous system. J. Neurophysiol. 51:689–704

    CAS  PubMed  Google Scholar 

  • Scuri R., Mozzachiodi R., Brunelli M. 2002. Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech. J. Neurophysiol. 88:2490–2500

    CAS  PubMed  Google Scholar 

  • Stewart R.R., Nicholls J.G., Adams W.B. 1989. Na+, K+ and Ca2+ currents in identified leech neurons in culture. J. Exp. Biol. 141:1–20

    CAS  PubMed  Google Scholar 

  • Weiss J.N. 1997. The Hill equation revisited: uses and misuses. FASEB J. 11:835–841

    CAS  PubMed  Google Scholar 

  • Yuan A., Santi C.M., Wei A., Wang Z.-W., Pollak K., Nonet M., Kaczmarek L., Crowder C.M., Salkoff L. 2003. The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37:765–773

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank two unknown referees for their constructive remarks and experimental suggestions, which led to a substantial improvement of our article

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hochstrate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klees, G., Hochstrate, P. & Dierkes, P. Sodium-dependent Potassium Channels in Leech P Neurons. J Membrane Biol 208, 27–38 (2005). https://doi.org/10.1007/s00232-005-0816-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0816-x

Keywords

Navigation