Log in

CFD modelling of a turbulent CH4/H2/N2 jet diffusion flame with detailed chemistry

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A CFD model based on the Reynolds Averaged Navier–Stokes (RANS) approach combined with a detailed chemical kinetic mechanism to investigate a turbulent CH4/H2/N2 jet diffusion flame is developed. The CFD governing equations of momentum, mass, and energy in the turbulent field were solved in conjunction with the standard k − ε turbulence model. The laminar flamelet concept that views the turbulent diffusion flame as an ensemble of laminar diffusion flamelets is adopted. The coupling between turbulence and chemistry is achieved by the statistical description of three parameters namely (1) mixture fraction (Z), (2) variance of mixture fraction (Z”2) and (3) scalar dissipation rate (χ). The flamelet model consists of two steps namely (a) the generation of a set of laminar flamelet solutions and (b) the integration of the laminar flamelet solutions with presumed-shape Probability Density Function (PDF). The GRI Mech-3.0 mechanism that involves 53 species and 325 reactions is adopted. The effect of various parameters such as C constant in the turbulent dissipation transport equation on the numerical solution is highlighted. Also, the comparison between the CFD model results and the experimental data of velocity, temperature and mass fractions of species (CH4, H2, N2, H2O, CO2, O2 and CO) along the centreline as well as on the radial position of x/D = 5, 40 are presented. Generally, the CFD results show a good agreement with the experimental data, and the presented approach in this paper is an accurate promising alternative to LES and DNS approaches for the modelling of non-premixed turbulent configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Williams FA (2018) Combustion theory: The fundamental theory of chemically reacting flow systems, 2nd edn. https://doi.org/10.1201/9780429494055

  2. Masri AR, Kalt PAM, Al-Abdeli YM, Barlow RS (2007) Turbulence-chemistry interactions in non-premixed swirling flames. Combust Theory Model 11(5):653–673. https://doi.org/10.1080/13647830701213482

    Article  MATH  Google Scholar 

  3. Zhou X, Luo KH, Williams JJR (2001) Numerical studies on vortex structures in the near-field of oscillating diffusion flames. Heat Mass Transf und Stoffuebertragung 37(2–3):101–110. https://doi.org/10.1007/s002310000166

    Article  Google Scholar 

  4. Snegirev A, Markus E, Kuznetsov E, Harris J, Wu T (2018) On soot and radiation modeling in buoyant turbulent diffusion flames. Heat Mass Transf und Stoffuebertragung 54(8):2275–2293. https://doi.org/10.1007/s00231-017-2198-x

    Article  Google Scholar 

  5. Yan ZH (2007) Large eddy simulations of a turbulent thermal plume. Heat Mass Transf und Stoffuebertragung 43(6):503–514. https://doi.org/10.1007/s00231-006-0127-5

    Article  Google Scholar 

  6. Jones WP (2002) Large Eddy Simulation of turbulent combustion processes. Comput Phys Commun 147(1–2):533–537. https://doi.org/10.1016/S0010-4655(02)00330-2

    Article  MATH  Google Scholar 

  7. Di Mare F, Jones WP, Menzies KR (2004) Large eddy simulation of a model gas turbine combustor. Combust Flame 137(3):278–294. https://doi.org/10.1016/j.combustflame.2004.01.008

    Article  Google Scholar 

  8. Bouras F, Khaldi F (2016) Computational modeling of thermodynamic irreversibilities in turbulent non-premixed combustion. Heat Mass Transf und Stoffuebertragung 52(4):671–681. https://doi.org/10.1007/s00231-015-1587-2

    Article  Google Scholar 

  9. Tabet F, Sarh B, Birouk M, Gökalp I (2012) The near-field region behaviour of hydrogen-air turbulent non-premixed flame. Heat Mass Transf und Stoffuebertragung 48(2):359–371. https://doi.org/10.1007/s00231-011-0889-2

    Article  Google Scholar 

  10. Tabet F, Sarh B, Gökalp I (2011) Investigation of turbulence models capability in predicting mixing in the near field region of hydrogen-hydrocarbon turbulent non-premixed flame. Heat Mass Transf und Stoffuebertragung 47(4):397–406. https://doi.org/10.1007/s00231-010-0725-0

    Article  Google Scholar 

  11. Li Z, Cuoci A, Sadiki A, Parente A (2017) Comprehensive numerical study of the Adelaide Jet in Hot-Coflow burner by means of RANS and detailed chemistry. Energy 139:555–570. https://doi.org/10.1016/j.energy.2017.07.132

    Article  Google Scholar 

  12. Hafid M, Hebbir N, Lacroix M, Joly P (2022) Simulating of non ‑ premixed turbulent combustion using a presumed probability density function method. Heat Mass Transf no. 0123456789. https://doi.org/10.1007/s00231-022-03238-7

  13. Peters N (1984) Laminar Diffusion Flametet Models in Non-Premixedturbulent Cumbustion vol. 10

  14. Pei Y, Hawkes ER, Kook S (2013) Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions. Proc Combust Inst 34(2):3039–3047. https://doi.org/10.1016/j.proci.2012.07.033

    Article  Google Scholar 

  15. Maghbouli A, Akkurt B, Lucchini T, D’Errico G, Deen NG, Somers B (2019) Modelling compression ignition engines by incorporation of the flamelet generated manifolds combustion closure. Combust Theory Model 23(3):414–438. https://doi.org/10.1080/13647830.2018.1537522

    Article  MathSciNet  MATH  Google Scholar 

  16. Pei Y, Hawkes ER, Kook S, Goldin GM, Lu T (2015) Modelling n-dodecane spray and combustion with the transported probability density function method. Combust Flame 162(5):2006–2019. https://doi.org/10.1016/j.combustflame.2014.12.019

    Article  Google Scholar 

  17. Pope SB (1985) PDF methods for turbulent reactive flows. Prog Energy Combust Sci 11(2):119–192. https://doi.org/10.1016/0360-1285(85)90002-4

    Article  Google Scholar 

  18. Zhang K, Ghobadian A, Nouri JM (2017) Comparative study of non-premixed and partially-premixed combustion simulations in a realistic Tay model combustor. Appl Therm Eng 110:910–920. https://doi.org/10.1016/j.applthermaleng.2016.08.223

    Article  Google Scholar 

  19. Coclite A, Cutrone L, Gurtner M, De Palma P, Haidn OJ, Pascazio G (2016) Computing supersonic non-premixed turbulent combustion by an SMLD flamelet progress variable model. Int J Hydrogen Energy 41(1):632–646. https://doi.org/10.1016/j.ijhydene.2015.10.086

    Article  Google Scholar 

  20. Dhuchakallaya I, Watkins AP (2009) Self-ignition of diesel spray combustion. Heat Mass Transf und Stoffuebertragung 45(12):1627–1635. https://doi.org/10.1007/s00231-009-0537-2

    Article  Google Scholar 

  21. Ihme M, Pitsch H (2008) Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. 2. Application in LES of Sandia flames D and E. Combust Flame 155(1–2):90–107. https://doi.org/10.1016/j.combustflame.2008.04.015

    Article  Google Scholar 

  22. Van Oijen JA, De Goey LPH (2000) Combustion science and technology modelling of premixed laminar flames using flamelet-generated manifolds. Combust Sci Technol 161(1):113–137

  23. De Goey LPH, Ten Thije Boonkkamp JHM (1999) A flamelet description of premixed laminar flames and the relation with flame stretch. Combust Flame 119(3):253–271. https://doi.org/10.1016/S0010-2180(99)00052-8

  24. Elattar HF, Specht E, Fouda A, Bin-Mahfouz AS (2016) CFD modeling using PDF approach for investigating the flame length in rotary kilns. Heat Mass Transf und Stoffuebertragung 52(12):2635–2648. https://doi.org/10.1007/s00231-016-1768-7

    Article  Google Scholar 

  25. Hashemi SA, Fattahi A, Sheikhzadeh GA, Mehrabian MA (2012) The effect of oxidant flow rate on a coaxial oxy-fuel flame. Heat Mass Transf und Stoffuebertragung 48(9):1615–1626. https://doi.org/10.1007/s00231-012-1008-8

    Article  Google Scholar 

  26. Khaldi N, Chouari Y, Mhiri H, Bournot P (2016) CFD investigation on the flow and combustion in a 300 MWe tangentially fired pulverized-coal furnace. Heat Mass Transf und Stoffuebertragung 52(9):1881–1890. https://doi.org/10.1007/s00231-015-1710-4

    Article  Google Scholar 

  27. Ben Sik Ali A, Kriaa W, Mhiri H, Bournot P (2012) Numerical investigations of cooling holes system role in the protection of the walls of a gas turbine combustion chamber. Heat Mass Transf und Stoffuebertragung 48(5):779–788. https://doi.org/10.1007/s00231-011-0932-3

  28. Gürtürk M, Oztop HF, Pambudi NA (2018) CFD analysis of a rotary kiln using for plaster production and discussion of the effects of flue gas recirculation application. Heat Mass Transf und Stoffuebertragung 54(10):2935–2950. https://doi.org/10.1007/s00231-018-2336-0

    Article  Google Scholar 

  29. Dally BB, Fletcher DF, Masri AR (1998) Flow and mixing fields of turbulent bluff-body jets and flames. Combust Theory Model 2(2):193–219. https://doi.org/10.1088/1364-7830/2/2/006

    Article  MATH  Google Scholar 

  30. OpenFOAM. www.openfoam.com

  31. Lipatnikov AN, Sabelnikov VA (2020) An extended flamelet-based presumed probability density function for predicting mean concentrations of various species in premixed turbulent flames. Int J Hydrogen Energy 45(55):31162–31178. https://doi.org/10.1016/j.ijhydene.2020.08.083

    Article  Google Scholar 

  32. Law WP, Gimbun J (2019) Thermal performance enhancement of non-premixed syngas combustion in a partial combustion unit by winged nozzle: Experimental and CFD study. Energy 182:148–158. https://doi.org/10.1016/j.energy.2019.06.040

    Article  Google Scholar 

  33. Okafor EC et al (2018) Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combust Flame 187:185–198. https://doi.org/10.1016/j.combustflame.2017.09.002

    Article  Google Scholar 

  34. Patankar S (1980) Numerical heat transfer and fluid flow. https://doi.org/10.1016/j.watres.2009.11.010

    Article  Google Scholar 

  35. Liu S (2016) CFD with OpenSource software Implementation of a Complete Wall Function for the Standard k − Turbulence. Proc CFD with OpenSource Softw 2016

  36. El-Mahallawy F, Habik SE-D (2002) Fundamentals and Technology of Combustion. Elsevier Sci

  37. Janicka J, Peters N (1982) Using a Pdf Transport Equation. Ninet Symp Combust Combust Inst, pp 367–374

  38. Namer I, Ötügen MV (1988) Velocity measurements in a plane turbulent air jet at moderate Reynolds numbers. Exp Fluids 6(6):387–399. https://doi.org/10.1007/BF00196484

    Article  Google Scholar 

  39. Schadow KC, Gutmark E, Koshigoe S, Wilson KJ (1989) Combustion-related shear-flow dynamics in elliptic supersonic jets. AIAA J 27(10):1347–1353. https://doi.org/10.2514/3.10270

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Future Optimization Ideas Inc. for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Hafid or Marcel Lacroix.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with respect to research, authorship and/or publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Numerical study of non-premixed flame with detailed chemistry, using OpenFOAM, is considered.

• Turbulence-chemistry interaction based on flamelet concept is adopted.

• Integration of flamelet library with presumed-PDF is performed.

• Increasement of ‘Cɛ1’ gives better prediction of the velocity.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafid, M., Hebbir, N., Lacroix, M. et al. CFD modelling of a turbulent CH4/H2/N2 jet diffusion flame with detailed chemistry. Heat Mass Transfer 59, 583–598 (2023). https://doi.org/10.1007/s00231-022-03283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03283-2

Navigation