Log in

Development of numerical model to describe water transfer in hygroscopic soil: use of a new method based on off-center upstream principle for convective flux

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This manuscript is focused on the mechanisms of water evaporation and the phenomena affecting its migration toward the groundwater. The objective is to estimate the essential parameters which govern the diffusion transfer. The phenomenological parameters used in the model are obtained experimentally and the mass transfer equations have been solved by adopting finite volume method for equations discretization and the eccentric upstream diagram method specifically for convection. The numerical results obtained are in good agreement with experimental results. These results show that the gap between the simulated and the experimental kinetics is less than 2% at the beginning of transfer mechanisms. This gap will decrease very quickly to reach zero. The model can also suitably reproduce water content profiles on the length of the soil column. The difference between experiment and numerical profiles range from 1 to 5% in the upper part and around 2% in the bottom part of the column. Finally we can notice that hygroscopic effects of arid soil can change the transport behavior of water and affect its convective transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\({a}_{l}\) :

Liquid activity –

\({D}_{va}\) :

Diffusion coefficient of vapor in free air m2 s1

\({D}_{v}\) :

Diffusion coefficient of vapor in soil m2 s1

\({\overrightarrow{F}}_{C}\) :

Capillary forces N

\(\overrightarrow{F}\) :

Gravitational forces N

G :

Gravity acceleration m s2

\({J}_{l}\) :

Diffusion flux of liquid kg m2 s1

\({J}_{v}\) :

Diffusion flux of vapor kg m2 s1

\({K}_{ns}\) :

Coefficient of permeability m s1

\({K}_{sat}\) :

Coefficient of saturated permeability m s1

\(L\) :

Evaporation coefficient of water kg K s m5

\({L}_{g}\) :

Average length m

\({L}_{s}\) :

Straight-line length m

\({M}_{l}\) :

Molar weight of liquid kg mol1

\({P}_{g}\) :

Total pressure of gas Pa

\({P}_{l}\) :

Partial pressure of liquid Pa

\({P}_{v}\) :

Vapor pressure Pa

\({P}_{veq}\) :

Equilibrium vapor pressure Pa

\({P}_{vsat}\) :

Saturated vapor pressure Pa

\(R\) :

Ideal gas constant J K1 mol1

s :

Suction Pa

\({s}_{\mathrm{i}}\) :

Intake suction Pa

\({s}_{res}\) :

Residual suction Pa

T :

Temperature of the system K

\({v}_{l}\) :

Liquid velocity m s1

w :

Water content –

\({w}_{eq}\) :

Equilibrium water content –

\({w}_{r}\) :

Residual water content –

\({w}_{sat}\) :

Saturated water content –

\(\nabla\) :

Divergence operator –

\(\lambda\) :

Empirical parameter –

\(\phi\) :

Porosity of soil %

\({\phi }_{g}\) :

Volume fraction of gas –

\({\rho }_{l}\) :

Apparent density of liquid kg m3

\({\rho }_{s}\) :

Apparent density of soil kg m3

\({\rho }_{l}^{*}\) :

Real density of liquid kg m3

\({\rho }_{s}^{*}\) :

Real density of soil kg m3

\({\rho }_{v}^{*}\) :

Real density of water vapor kg m3

\({\widehat{\rho }}_{l}\) :

Source or sink term of liquid kg m3 s1

\({\widehat{\rho }}_{v}\) :

Source or sink term of vapor kg m3 s1

References

  1. Zhao L, Nan H, Kan Y, Xu X, Qiu H, Cao X (2019) Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent. Environ Pollut 254:113114

    Article  Google Scholar 

  2. Omar M, Shanableh A, Mughieda O, Arab M, Zeiada W, Al-Ruziuq R (2018) Advanced mathematical models and their comparison. Soils Found 58:1383–1399

    Article  Google Scholar 

  3. Mazari M, Navarro E, Abdallah I, Nazarian S (2014) Comparison of numerical and experimental responses of pavement systems using various resilient modulus models. Soils Found 54:36–44

    Article  Google Scholar 

  4. Cai W, McDowell GR, Airey GD (2014) Discrete element visco-elastic modelling of realistic graded asphalt mixture. Soils Found 54:12–22

    Article  Google Scholar 

  5. Chegenizadeh A, Ghadimi B, Nikraz H (2014) The Prediction of Contaminant Transport through Soil: A Novel Two-Dimensional Model Approach. J Civil Environ Eng 4(2):1000138

    Article  Google Scholar 

  6. Liu W, Shen S, Riffat SB (2002) Heat transfer and phase change of liquid in an inclined enclosure packed with unsaturated porous media. Int J Heat Mass Transf 45:5209–5219

    Article  MATH  Google Scholar 

  7. Ranieri E, Bombardelli F, Gikas P, Chiaia B (2016) Soil Pollution Prevention and Remediation. Appl Environ Soil Sci. https://doi.org/10.1155/2016/9415175,2pages

    Article  Google Scholar 

  8. Boivin A, Cherrier R, Schiavon M (2005) A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 61:668–676

    Article  Google Scholar 

  9. Boivin A, Cherrier R, Perrin-Ganier C, Schiavon M (2004) Time effect on bentazone sorption and degradation in soil. Pest Manage Sci 60(8):809–814

    Article  Google Scholar 

  10. Clausen L, Fabricius I (2002) Atrazine, isoproturon, mecoprop, 2,4-D, and bentazone adsorption onto iron oxides. J Environ Qual 30(3):858–869

    Article  Google Scholar 

  11. Gramatica P, Di Guardo A (2002) Screening of pesticides for environmental partitioning tendency. Chemosphere 47(9):947–956

    Article  Google Scholar 

  12. Spark KM, Swift RS (2002) Effect of soil composition and dissolved organic matter on pesticide sorption. Sci Total Environ 298(1–3):147–161

    Article  Google Scholar 

  13. Gerolymatou E, Vardoulakis I, Hilfer R (2005) Simulating the saturation front using a fractional diffusion model. 5th GRACM International Congress on Computational Mechanics Limassol 29 June-1 July

  14. Chammari A, Naon B, Cherblanc F, Bénet JC (2003) Transfert d’eau en sol aride avec changement de phase. C R Mécanique 331:759–765

    Article  MATH  Google Scholar 

  15. Lozano AL, Cherblanc F, Cousin B, Bénet JC (2008) Experimental study and modelling of the water phase change kinetics in soils. Eur J Soil Sci 59:939–949

    Article  Google Scholar 

  16. Bénet JC, Lozano AL, Cherblanc F, Cousin B (2009) Phase Change of Water in a Hygroscopic Porous Medium. Phenomenological Relation and Experimental Analysis for Water in soil. J Non-Equilib Thermodyn 34:97–117

  17. Ouoba S, Cherblanc F, Cousin B, Bénet JC (2010) A New Experimental Method to Determine the Sorption Isotherm of a Liquid in a Porous Medium. Environ Sci Technol 44:5915–5919

    Article  Google Scholar 

  18. Steinberg SM (1996) Sorption of Benzene and Trichlorethylene (TCE) on a Desert Soil: Effects of Moisture and Organic Matter. Chemosphere 33:961–980

    Article  Google Scholar 

  19. Abriola LM, Pinder GF (1985) A multiphase approach to the modeling of porous media contamination by organic compounds, 1. Equation Develop Water Resour Res 21:11–18

    Article  Google Scholar 

  20. Miller CT, Christakos G, Imhoff PT, McBride JF, Pedit JA, Trangenstein JA (1998) Multiphase phase flow and transport modeling in heterogeneous porous media: Challenges and approaches. Adv Water Resour 21:77–120

    Article  Google Scholar 

  21. Quintard M, Bletzacker L, Chenu D, Whitaker S (2006) Nonlinear, multicomponent, mass transport in porous media. Chem Eng Sci 61:2643–2669

    Article  Google Scholar 

  22. Karapanagioti HK, Gaganis P, Burganos V, Höhener P (2004) Reactive transport of volatile organic compound mixtures in the unsaturated zone: modeling and tuning with lysimeter data. Environ Model Softw 19:435–450

    Article  Google Scholar 

  23. Braida W, Ong SK (2000) Influence of Porous Media and Airflow Rate on the Fate of NAPLs Under Air Sparging. Transp Porous Media 38:29–42

    Article  Google Scholar 

  24. Dridi L, Schäfer G (2006) Quantification du flux de vapeurs de solvants chlorés depuis une source en aquifère poreux vers l’atmosphère : Biais relatifs à la non uniformité de la teneur en eau et à la non stationnarité du transfert. Compte Rendu Mécanique 334:611–620

    Article  MATH  Google Scholar 

  25. Iakovleva VS, Ryzhakova NK (2003) A method for estimating the convective radon transport velocity in soils. Radiat Meas 36:389–391

    Article  Google Scholar 

  26. Jellali S, Benremita H, Muntzer P, Razakarisoa O, Schäfer G (2003) A large-scale experiment on mass transfer of trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces. J Contam Hydrol 60:31–53

    Article  Google Scholar 

  27. Grolimund D, Borkovec M (2006) Release of colloidal particles in natural porous media by monovalent and divalent cations. J Contam Hydrol 87:155–175

    Article  Google Scholar 

  28. Kneafsey TJ, Hunt JR (2004) Non-aqueous phase liquid spreading during soil vapor extraction. J Contam Hydrol 68:143–164

    Article  Google Scholar 

  29. Fredlund DG, **ng A, Huang S (1994) Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can Geotech J 31(3):521–532

    Article  Google Scholar 

  30. Kébré MB, Cherblanc F, Ouedraogo F, Jamin F, Naon B, Zougmoré F, Bénet JC (2017) Water flow in soil at small water contents: A simple approach to estimate the relative hydraulic conductivity in sandy soil. Eur J Soil Sci 68(2):167–176

    Article  Google Scholar 

  31. Ouedraogo F, Cherblanc F, Naon B, Benet JC (2013) Water transfer in soil at low water content. Is the local equilibrium assumption still appropriate? J Hydrol 492:117–124

    Article  Google Scholar 

  32. Benremita H, Schäfer G (2003) Transfert du trichloroéthylène en milieu poreux à partir d’un panache de vapeurs. Compte Rendu Mécanique 331:835–842

    Article  Google Scholar 

  33. Bohy M, Dridi L, Schäfer G, Razakarisoa O (2006) Transport of a Mixture of Chlorinated Solvent Vapors in the Vadose Zone of a Sandy Aquifer: Experimental Study and Numerical Modeling. Vadose Zone Journal 5(2):539–553

    Article  Google Scholar 

  34. Mendoza CA, Mc Alary TA (1990) Modeling of groundwater contamination caused by organic solvent vapors. Groundwater 28(2):199–206

    Article  Google Scholar 

  35. Schaefer CE, Arands RR, Kosson DS (1999) Measurement of pore connectivity to describe diffusion through a nonaqueous phase in unsaturated soils. J Contam Hydrol 40:221–238

    Article  Google Scholar 

  36. Grass R (1988) Physique du sol pour l’aménagement. Masson 587

  37. Mendoza CA, Johnson RL, Gillham RW (1996) Vapor migration in the vadose zone. In J. F. Pankow and J. A. Cherry (ed) Dense chlorinated solvents and other DNAPLs in groundwater: History, behavior, and remediation. Waterloo press, Portland, OR

  38. Grathwohl P (1998) Diffusion in natural porous media: contaminant transport, orption/desorption and dissolution kinetics. Topics in Environmental Fluid Mechanics, Kluwer Academic Publishers 207p

  39. Wang G, Reckhorn SBF, Grathwohl P (2003) Volatilization of VOC from multicomponent mixtures in unsaturated porous media. Vadose Zone J 2:692–701

    Article  Google Scholar 

  40. Matyka M, Khalili A, Koza Z (2008) Tortuosity–porosity relation in porous media flow. Phys Rev E 78:026306. https://doi.org/10.1103/PhysRevE.78.026306

  41. Werner D, Höhener P (2003) In situ method to measure effective and sorption-affected gasphase diffusion coefficients in soils. Environ Sci Technol 37:2502–2510

    Article  Google Scholar 

  42. Werner D, Grathwohl P, Höhener P (2004) Review of field methods for the determination of the tortuosity and effective gas-phase diffusivity in the vadose zone. Vadose Zone J 3:1240–1248

    Article  Google Scholar 

  43. Penman HL (1940) Gas and vapor movements in the soil. I. The diffusion of vapors through porous solids. J Agric Sci 30:437–462

    Article  Google Scholar 

  44. Millington RJ (1959) Gas diffusion in porous media. Science 130:100–102

    Article  Google Scholar 

  45. Marshall TJ (1959) The diffusion of gases through porous media. J Soil Sci 10:79–82

    Article  Google Scholar 

  46. Millington RJ, Quirk JP (1960) Permeability of porous media 57:1200–1207

    Google Scholar 

  47. Curie JA (1960) Gaseous diffusion in porous media. Part 1: A non-steady state method. Part2: Dry granular materials. Brit J Appl Physics 11:314–324

    Article  Google Scholar 

  48. Sallam A, Jury WA, Letey J (1984) Measurement of gas diffusion coefficient under relatively low air-filled porosity. Soil Sci Soc Am J 48:3–6

    Article  Google Scholar 

  49. Moldrup P, Olesen T, Komatsu T, SchjØnning P, Rolston DE (2001) Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci Soc Am J 65:613–623

    Article  Google Scholar 

  50. Moldrup P, Olesen T, Gamst J, Schjønning P, Yamaguchi T, Rolston DE (2000) Predicting the gas diffusion coefficient in repacked soil: Water-induced linear reduction model. Soil Sci Soc Am J 64:1588–1594

    Article  Google Scholar 

  51. Bénet JC, Jamin F, El Youssoufi MS (2017) Chemical potential of a two-component liquid in porous media: The case of unsaturated soil. Geomech Energy Environ 9:36–45

    Article  Google Scholar 

  52. Lozano AL, Cherblanc F, Bénet JC (2009) Water evaporation versus condensation in hygroscopic soils. Transp Porous Media 80(2):209–222

    Article  Google Scholar 

  53. Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z (2004) A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research 109:D14203. https://doi.org/10.1029/2003JD003697

  54. Bénet JC, Ramirez-Martinez A, Ouedraogo F, Cherblanc F (2012) Measurement of the chemical potential of a liquid in porous media. J Porous Media 15:1019–1029

    Article  Google Scholar 

  55. Ouoba S, Daho T, Cherblanc F, Koulidiati J, Bénet JC (2015) A New Experimental Method to Determine the Evaporation Coefficient of Trichloroethylene (TCE) in an Arid Soil. Transp Porous Med 106:339–353

    Article  Google Scholar 

  56. Fredlund MD, Fredlund DG, Wilson GW (1997) Prediction of soil-water characteristic curve from grain-size distribution and volume-mass properties. 3rd Brazilian Symposium on Unsaturated soils Rio de Janeiro Brazil 1–12

  57. Fredlund DG, **ng A (1994) Equations for the soil water characteristic curve. Can Geotech J 31:521–532

    Article  Google Scholar 

  58. Lax PD, Wendroff B (1964) Difference Schemes for Hyperbolic Equations with High Order of Accuracy. Commun Pure Appl Math 17:381–398

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

S Ouoba supervised the research and designed the experiments. S Ouoba, AO Dissa and F Ouedraogo analyzed data and co-wrote the paper.

Corresponding author

Correspondence to Samuel Ouoba.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouoba, S., Dissa, A.O. & Ouedraogo, F. Development of numerical model to describe water transfer in hygroscopic soil: use of a new method based on off-center upstream principle for convective flux. Heat Mass Transfer 59, 567–581 (2023). https://doi.org/10.1007/s00231-022-03277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03277-0

Navigation