Log in

Structural optimization for an axial oil‐water separator with multi‐stage separation

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In order to meet the demand of industrial production, an axial separator for oil-water separation is proposed. The separator uses the pattern of multi-stage separation, and it is divided into two chambers by two swirl impellers. The oil phase flows out through three Light Phase Outlet (LPO) at the center of the impeller hub, meanwhile the water phase flows out through Heavy Phase Outlet (HPO). An experimental platform was built to verify the feasibility of multi-stage separation. The Mixture model and Reynolds stress model was used to simulate the separation process, and the numerical results had a well agreement with experimental results. The effects of the diameter of cylindrical section, length of conical section and length of separation chamber on the separation performance were studied. The results show that: changing the diameter of cylindrical section has greatest impact on separation performance. The separation efficiency and pressure drop first increase and then decrease with increase of primary conical section length. With increase of second conical section length, the separation performance has been increasing. If it only looks at the relationship between pressure drop and separation efficiency, then there is a pressure drop to maximize the separation efficiency. Changing the diameter of cylindrical section can adjust the flow split LPOs. Increasing the length of second conical section can increase the split ratio of LPO3, but it has almost no effect on the total split ratio of LPOs. the value of structure is determined and the efficiency of separator exceeds 93 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bowers B, Peak Process IE, Brownlee RF, Schrenkel PJ (2000) Development of a downhole oil-water separation and reinjection system for offshore application. SPE J 15:639–648

  2. Zeng X, Zhao L, Fan G, Yan C (2021) Experimental study on the design of light phase outlets for a novel axial oil-water separator. Chem Eng Res Des 165:308–319. https://doi.org/10.1016/j.cherd.2020.11.008

    Article  Google Scholar 

  3. Peachey B, Solanki R, Zahacy SC, Piers TA (1998) Downhole Oil/Water separation moves into high gear. J Can Pet Technol 37:34–41

    Article  Google Scholar 

  4. Bhaskar KU, Murthy YR, Raju MR, Tiwari S, Srivastava JK, Ramakrishnan N (2007) CFD simulation and experimental validation studies on hydrocyclone. Miner Eng 20:60–71. https://doi.org/10.1016/j.mineng.2006.04.012

    Article  Google Scholar 

  5. Noroozi S, Hashemabadi SH (2009) CFD simulation of inlet design effect on deoiling hydrocyclone separation efficiency. Chem Eng Technol 32:1885–1893. https://doi.org/10.1002/ceat.200900129

    Article  Google Scholar 

  6. Saidi M, Maddahian R, Farhanieh B (2012) Numerical investigation of cone angle effect on the flow field and separation efficiency of deoiling hydrocyclones. Heat Mass Transf 49:247–260. https://doi.org/10.1007/s00231-012-1085-8

    Article  Google Scholar 

  7. Young G, B A, Wakley WD, Taggart DL, Andrews SL, Worrell JR (1994) Oil-water separation using hydrocyclones: An experimental search for optimum dimensions. J Pet Sci Eng 11:37–50

    Article  Google Scholar 

  8. Wang J, Bai Z, Yang Q, Fan Y, Wang H (2016) Investigation of the simultaneous volumetric 3-component flow field inside a hydrocyclone. Sep Purif Technol 163:120–127. https://doi.org/10.1016/j.seppur.2016.02.022

    Article  Google Scholar 

  9. Schütz S, Gorbach G, Piesche M (2009) Modeling fluid behavior and droplet interactions during liquid–liquid separation in hydrocyclones. Chem Eng Sci 64:3935–3952. https://doi.org/10.1016/j.ces.2009.04.046

    Article  Google Scholar 

  10. Dirkzwager M (1996) A new axial cyclone design for fluid-fluid separation. PhD Thesis, Delft University of TechnologyDelft

  11. van C, Laurens, Mudde R, Frank, Slot J, Hoeijmakers H (2012) A numerical and experimental survey of a liquid-liquid axial cyclone. Int J Chem Reactor Eng 10. https://doi.org/10.1515/1542-6580.3003

  12. Bai Z-s, Wang H-l, Tu S-T (2009) Experimental study of flow patterns in deoiling hydrocyclone. Miner Eng 22:319–323. https://doi.org/10.1016/j.mineng.2008.09.003

    Article  Google Scholar 

  13. Hamza JE, Al-Kayiem HH, Lemma TA (2020) Experimental investigation of the separation performance of oil/water mixture by compact conical axial hydrocyclone. Therm Sci Eng Prog 17:100358. https://doi.org/10.1016/j.tsep.2019.100358

    Article  Google Scholar 

  14. Husveg T, Rambeau O, Drengstig T, Torleiv B (2007) Performance of a deoiling hydrocyclone during variable flow rates. Miner Eng 20:368–379. https://doi.org/10.1016/j.mineng.2006.12.002

    Article  Google Scholar 

  15. Zhou N, Gao Y, An W, Yang M (2010) Investigation of velocity field and oil distribution in an oil–water hydrocyclone using a particle dynamics analyzer. Chem Eng J 157:73–79. https://doi.org/10.1016/j.cej.2009.10.049

    Article  Google Scholar 

  16. Shi S-y, Xu J-y (2015) Flow field of continuous phase in a vane-type pipe oil–water separator. Exp Thermal Fluid Sci 60:208–212. https://doi.org/10.1016/j.expthermflusci.2014.09.011

    Article  Google Scholar 

  17. Murphy S, Delfos R, Pourquié MJBM, Olujić Ž, Jansens PJ, Nieuwstadt FTM (2007) Prediction of strongly swirling flow within an axial hydrocyclone using two commercial CFD codes. Chem Eng Sci 62:1619–1635. https://doi.org/10.1016/j.ces.2005.10.031

    Article  Google Scholar 

  18. Liu M, Chen J, Cai X, Han Y, **ong S (2018) Oil–water pre-separation with a novel axial hydrocyclone. Chin J Chem Eng 26:60–66. https://doi.org/10.1016/j.cjche.2017.06.021

    Article  Google Scholar 

  19. Wang Z, Yi M, ** Y (2011) Simulation and experiment of flow field in axial-flow hydrocyclone. Chem Eng Res Des 89:603–610. https://doi.org/10.1016/j.cherd.2010.09.004

    Article  Google Scholar 

  20. Jiang M, Chen D, Chen S, Xu L, Zhao L (2009) Comparative experimental research on oily wastewater treatment by hydrocyclones in series. special track within iCBBE2009 6:1–4

  21. Si H (2005) Numerical simulation of oil-water numerical simulation of oil-water hydrocyclone using reynolds-stress model for eulerian multiphase flows. Can J Chem Eng 83:829–834

  22. Kharoua N, Khezzar L, Nemouchi Z (2010) Hydrocyclones for de-oiling applications—A review. Pet Sci Technol 28:738–755. https://doi.org/10.1080/10916460902804721

    Article  Google Scholar 

  23. Ba ZS, Wang HL (2006) Numerical simulation of the separating performance of hydrocyclones. Chem Eng Technol 29:1161–1166. https://doi.org/10.1002/ceat.200600102

    Article  Google Scholar 

  24. Paladino EE, NGC, Schwenk L (2005) CFD analysis of the transient flow in a low-oil concentration hydrocyclone. Proc of the Annual Meeting: AIChE 646–657

  25. Dyakowski TW, R,A (1993) Modeling turbulent flow with-in a small-diameter hydrocyclone. Chem Eng Sci 48:1143–1152

    Article  Google Scholar 

  26. Lu Y, Zhou l, Shen X (2001) Different turbulence models for simulating a liquid-liquid hydrocyclone. J Tsinghua Univ (Sci Technol) 41:105–109

    Google Scholar 

  27. Yang I, Shin H, Kim CB, Kim TH (2004) A three-dimensional simulation of a hydrocyclone for the sludge separation in water purifying plants and comparison with experimental data. Miner Eng 17:637–641. https://doi.org/10.1016/j.mineng.2003.12.010

    Article  Google Scholar 

  28. Zeng X, Zhao L, Zhao W, Hou M, Zhu F, Fan G, Yan C (2020) Experimental study on a novel axial separator for oil–water separation. Ind Eng Chem Res 59:21177–21186. https://doi.org/10.1021/acs.iecr.0c03913

    Article  Google Scholar 

  29. Zeng X, Yan C, Fan G (2020) Experimental study on two different gas-liquid separators under different flow patterns. 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference

  30. Kline SJ (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8

  31. Zeng X, Zhao L, Zhao W, Hou M, Zhu F, Fan G, Yan C (2021) Experimental study on a compact axial separator with conical tube for liquid-liquid separation. Sep Purif Technol 257:117904. https://doi.org/10.1016/j.seppur.2020.117904

    Article  Google Scholar 

  32. Zeng X, Fan G, Xu J, Liu A, Xu Y, Yan C (2020) Experimental study on a new gas–liquid separator for a wide range of gas volume fraction. Chem Eng Res Des 160:561–570. https://doi.org/10.1016/j.cherd.2020.06.004

    Article  Google Scholar 

  33. Wang G, Yan C, Fan G, Wang J, Xu J, Zeng X, Liu A (2019) Experimental study on a swirl-vane separator for gas–liquid separation. Chem Eng Res Des 151:108–119. https://doi.org/10.1016/j.cherd.2019.09.003

    Article  Google Scholar 

  34. Noroozi S, Hashemabadi SH (2011) CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency. Chem Eng Res Des 89:968–977. https://doi.org/10.1016/j.cherd.2010.11.017

    Article  Google Scholar 

  35. Zeng X, Xu Y, Zhao L (2021) Numerical investigation on axial liquid-liquid separators with different swirl chambers. Chem Eng Process Process Intensif 161:1–11

  36. Cai B, Wang J, Sun L, Zhang N, Yan C (2014) Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR. Prog Nucl Energy 74:1–13. https://doi.org/10.1016/j.pnucene.2014.02.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Fan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Zeng, X., Zhao, W. et al. Structural optimization for an axial oil‐water separator with multi‐stage separation. Heat Mass Transfer 57, 1949–1963 (2021). https://doi.org/10.1007/s00231-021-03084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03084-z

Keywords

Navigation