Log in

Experimental research on the molecular-topological structure of oak (Quercus robur L.) and birch wood (Betula pendula Roth) and its shape-memory effect

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Features and characteristics of wood as a natural smart material allow us to use it to create new smart biocomposite materials, intelligent systems and environments. The shape-memory effect of oak (Quercus robur L.) and birch (Betula pendula Roth) veneers was investigated. Thermomechanical spectrometry was used to study these two species, which makes it possible to establish the relationship between the deformation transformations and the nature of intermolecular interactions and the interchain organization of wood polymers. The quantitative and molecular relaxation characteristics of the topological structure were obtained for the characterization of the shape-memory effect for the permanent, temporary and after recovery shapes of birch and oak wood samples. The results showed a relationship between the quantities of shape-memory effect and changes in the molecular-topological structure. A reversible transformation of a topological structure was experimentally confirmed for birch and oak woods, with the formation of a temporary deformation and the recovery of the original permanent shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antonova GF, Ol’khov YA, Konovalov NT (2014) Structural changes in oak wood under the effect of ultrasound. Himija rastitel’nogo syr’ja 4:77–84 https://doi.org/10.14258/jcprm.201404312

  • Baturin SM, Ol’hov YA (1995) A method of the analysis of molecular and topological structure of polymeric materials. Technika maschinostroenia 4:20–32 (in Russian)

    Google Scholar 

  • Behl M, Lendlein A (2007) Shape-memory polymers. Materials Today 10(4):20-28. ISSN:1369 7021

    Article  CAS  Google Scholar 

  • Berg GJ, McBride MK, Wang C, Bowman CN (2014) New directions in the chemistry of shape memory polymers. Polymer 55:5849–5872. https://doi.org/10.1016/j.polymer.2014.07.052

    Article  CAS  Google Scholar 

  • Cowie JMG, Arrighi V (2007a) Chapter 9: polymer characterization—molar masses. In: Cowie JMG, Arrighi V (eds) Polymers: chemistry and physics of modern materials, pp 229–252. ISBN: 978-1-4200-0987-3

  • Cowie JMG, Arrighi V (2007b) Chapter 10: polymer characterization—chain dimensions, structures, and morphology. In: Cowie JMG, Arrighi V (eds) Polymers: chemistry and physics of modern materials, pp 253–278. ISBN: 978-1-4200-0987-3

  • Cowie JMG, Arrighi V (2007c) Chapter 12: the glassy state and glass transition. In: Cowie JMG, Arrighi V (eds) Polymers: chemistry and physics of modern materials, pp 321–344. ISBN: 978-1-4200-0987-3

  • Cowie JMG, Arrighi V (2007d) Chapter 15: structure–property relations. In: Cowie JMG, Arrighi V (eds) Polymers: chemistry and physics of modern materials, pp 409–454. ISBN: 978-1-4200-0987-3

  • Erinsh PP (1977) Structure and properties of wood as multicomponent polymeric system. Chimia drevesini 1:8–25 (In Russian)

    Google Scholar 

  • Gandhi MV, Thompson BS (1992) Smart materials and structures. Chapman & Hall, London

    Google Scholar 

  • Gorbacheva GA (2000) The method of experimental study of thermomechanical strains at bending. Proc MSFU 312:12–15 (in Russian)

    Google Scholar 

  • Gorbacheva GA (2004) Deformative conversions of wood at changing of loading, moisture content and temperature. PhD Thesis, Moscow State Forest University, Moscow

  • Gorbacheva GA, Ugolev BN, Olkhov YA, Sanaev VG, Belkovskiy SY (2014a) Transformation of wood structure at shape memory effect. In: Proceedings of IAWS Plenary meeting 2014—eco-efficient resource wood with special focus on hardwood, Sopron–Vienna, University of West Hungary Press, Sopron, pp 13–14

  • Gorbacheva GA, Olkhov YA, Ugolev BN, Belkovskiy SY (2014b) Research of molecular-topological structure at shape-memory effect of wood. In: Proceedings of 57th international convention of SWST, Zvolen, Publishing House of the Technical University in Zvolen, Zvolen, pp 187–195

  • Gorbacheva GA, Ugolev BN, Sanaev VG, Belkovskiy SY, Gorbachev SA (2015) Methods of characterization of memory effect of wood. ProLigno 11(4):65–72

    Google Scholar 

  • Gorbacheva GA, Belkovskiy SY, Lapshin JG (2017) The method of visualization and quantification of the shape memory effect of wood and wood materials. Patent of Russian Federation no. 2627852

  • Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33

    Article  Google Scholar 

  • Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763. https://doi.org/10.1016/j.progpolymsci.2012.06.001

    Article  CAS  Google Scholar 

  • Irzhak VI, Korolev GV, Solov’ev ME (1997) Intermolecular interaction in polymers and the physical network model. Russ Chem Rev 66(2):167–186. https://doi.org/10.1070/RC1997v066n02ABEH000256

    Article  Google Scholar 

  • Jakes JE, Plaza N, Zelinka S, Stone D (2012) Water-activated, shape memory twist effect in wood slivers as an inspiration for biomimetic smart materials. In: Proceedings of TAPPI international conference on nanotechnology for renewable materials 2012, Quebec, 2012. TAPPI Press, Norcross 2012, pp 368–380

  • Jurkowska B, Ol’khov Y, Jurkowski B (1999) Application of thermomechanical mass spectroscopy for analysis of molecular and topological structure of rubber. J Appl Polym Sci 74(3):490–501

    Article  CAS  Google Scholar 

  • Kalyuta EV, Markin VI, Bazarnova NG, Ol’khov YA (2010) Evaluation of molecular-mass distribution of cellulose using thermomechanical spectroscopy. Russ J Bioorg Chem 36(7):863-866. ISSN 1068-1620

    Article  CAS  Google Scholar 

  • Kazakevičiūtė-Makovska R, Steeb H, Aydin AÖ (2012) On the evolution law for the frozen fraction in linear theories of shape memory polymers. Arch Appl Mech 82:1103–1115. https://doi.org/10.1007/s00419-012-0615-7

    Article  Google Scholar 

  • Kazakevičiūtė-Makovska R, Heuchel M, Kratz K, Steeb H (2014) Universal relations in linear thermoelastic theories of thermally-responsive shape memory polymers. Int J Eng Sci 82:140–158. https://doi.org/10.1016/j.ijengsci.2014.05.009

    Article  Google Scholar 

  • Kulasinski K (2015) Physical and mechanical aspects of moisture adsorption in wood biopolymers investigated with atomistic simulations, PhD Thesis. ETH Zurich, Zurich

  • Lendlein A (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    Article  Google Scholar 

  • Lendlein A, Kelch S (2002) Shape-memory polymers: reviews. Angewandte Chemie International Edition in English 41(12):2034–2057

    Article  CAS  Google Scholar 

  • Lendlein A, Sauter T (2013) Shape-memory effect in polymers. Macromol Chem Phys 214:1175–1177. https://doi.org/10.1002/macp.201300098

    Article  CAS  Google Scholar 

  • Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135. https://doi.org/10.1016/j.pmatsci.2011.03.001

    Article  CAS  Google Scholar 

  • Li H (2014) Synthesis and characterization of copolymers from lignin. PhD Thesis, College of Graduate Studies University of Idaho, Idaho, USA

  • Li H, Sivasankarapillai G, Mcdonald AG (2014) Lignin valorization by forming toughened thermally-stimulated shape memory copolymeric elastomers—partially crystalline hyperbranched polymer as crosslinks. J Appl Polym Sci. https://doi.org/10.1002/app.41103

    Article  Google Scholar 

  • Li Y, Hu J, Liu Z (2017) A constitutive model of shape memory polymers based on glass transition and the concept of frozen strain release rate. Int J Solids Struct 124:252–263. https://doi.org/10.1016/j.ijsolstr.2017.06.039

    Article  CAS  Google Scholar 

  • Liu Y, Gall K, Dunn ML, Greenberg AR, Diani J (2006) Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int J Plast 22:279–313. https://doi.org/10.1016/j.ijplas.2005.03.004

    Article  CAS  Google Scholar 

  • Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558. https://doi.org/10.1039/b615954k

    Article  CAS  Google Scholar 

  • Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Composit A 40:1661–1672. https://doi.org/10.1016/j.compositesa.2009.08.011

    Article  Google Scholar 

  • Niemz P, Sonderegger W (2017) Holzphysik: physik des holzes und der Holzwerkstoffe. Carl Hanser Verlag GmbH & Company KG, Munich

    Book  Google Scholar 

  • Ol’khov YA, Estrin JI (1991) The way of measuring the density of a spatial network of the crosslinked elastomers 3. Patent of Russian Federation no. 1540463

  • Ol’khov YA, Irzhak VI (1998) Thermomechanical analysis for determination of the molecular mass distribution of bulk polymers. Polym Sci Ser B Polym Chem 10:1706–1714

    Google Scholar 

  • Ol’khov Y, Jurkowski B (1997) Thermomechanical study of molecular and topological structure of different kinds of sulfur. J Appl Polym Sci 65(3):499–505

    Article  Google Scholar 

  • Ol’khov Y, Jurkowski B (2005) On the more informative version of thermomechanical analysis at compression mode: a review. J Therm Anal Calorim 81:489–500

    Article  Google Scholar 

  • Ol’khov YA, Bakova GM, Alejnikova AS, Baturin SM (1992a) The way of measuring of density of the spatial network of a polymer binder in a composite material, Patent of Russian Federation no. 1784861

  • Ol’khov YA, Gorbushina GA, Baturin SM (1992b) The way of determining the density of the spatial network of crosslinked polymers, Patent of Russian Federation no. 1713359

  • Ol’khov YA, Irzhak VI, Baturin SM (1992c) The way of definition of molecular-mass distribution of polymers, Patent of Russian Federation no. 1763952

  • Ol’khov YA, Filonenko YA, Chernikov SS, Mikhailov AI, Baturin SM (1993) Solutionless analysis of molecular mass distribution of pulp and wood by thermomechanical method. In: Proceedings of 7th international symposium wood and pulp Chem, Bei**g, Technical Association of Pulp and Paper Industry, Bei**g, pp 520–525

  • Ol’khov YA, Baturin SM, Irzhak VI (1996) Effect of molecular mass distribution on the thermomechanical properties of linear polymers. Polym Sci Ser A 38(5):544–551

    Google Scholar 

  • Ol’khov Y, Smirnov YN, Rudakov VM, Barelko VV (2003) Thermomechanical spectroscopy of polyethylene and of the polyethylene matrix of glass fibre reinforced plastics manufactured by various methods. Plasticheskie Massy 7:5–10. Int Polym Sci Technol 31(4):T1–T6. https://doi.org/10.1177/0307174X0403100401

    Article  Google Scholar 

  • Ol’khov Y, Allayarov SR, Nikolskii VG, Dixon DA (2016) Radiothermoluminescence and thermomechanical spectrometry study of gammairradiated vinylidene fluoride–chlorotrifluoroethylene copolymer. High Energ Chem 50(3):177–183. https://doi.org/10.1134/s0018143916030115

    Article  Google Scholar 

  • Ol’hov YuA, Chernikov SS, Mikhajlov AI (2001) Solutionless analysis of molecular-mass distributions in vegetable polymers of lignin, cellulose and wood by the thermomechanical method. Chem Plant Raw Mater 2:83–95

    Google Scholar 

  • Pilate F, Toncheva A, Dubois P, Raquez JM (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polym J 80:268–294. https://doi.org/10.1016/j.eurpolymj.2016.05.004

    Article  CAS  Google Scholar 

  • Ravve A (2012) Chapter 2: physical properties and physical chemistry of polymers. In: Ravve A (ed) Principles of polymer chemistry, pp 17–68. ISBN 978-1-4614-2211-2

    Chapter  Google Scholar 

  • Sakakibara A (1991) Chemistry of lignin – Chapter 4. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc., New York, pp 113–175. ISBN 0-8247-8304-2

    Google Scholar 

  • Salmen L (2004) Micromechanical understanding of the cell wall structure. C R Biol 327(9–10):873–880. https://doi.org/10.1016/j.crvi.2004.03.010

    Article  CAS  PubMed  Google Scholar 

  • Sisson AL, Lendlein A (2012) Advances in actively moving polymers. Macromol Mater Eng 297(12):1135–1137. https://doi.org/10.1002/mame.201290034

    Article  CAS  Google Scholar 

  • Sivasankarapillai G, Li H, McDonald AG (2015) Lignin-based triple shape memory polymers. Biomacromol 16(9):2735–2742

    Article  CAS  Google Scholar 

  • Smetannikov OY (2010) The models of the mechanical behavior of materials and structures in technological processes with thermorelaxation transition. PhD Thesis, Perm State Technical University, Perm

  • Smirnov YN, Muradian VE, Shatskaia TE, Beliaeva EA, Kosolapov AF, Son-Pei T (2010) Investigation of the structure and properties of modified polyepoxy vinyl ester networks. Plast Massy 5:11–16

    Google Scholar 

  • Takagi T (1990) A concept of intelligent materials. J Intell Mater Syst Struct 1(2):149–156

    Article  Google Scholar 

  • Ugolev BN (1961) Method of research of wood rheological properties at changing moisture content. Zavodskaja Laboratoria 27(2):199–203 (In Russian)

    Google Scholar 

  • Ugolev BN (1986) Effect of ‘freezing’ wood deformations at complex force and heat actions. In: Proceedings 2nd international symposium on wood rheology, Rydzina, Poland, pp 5–14

  • Ugolev BN (2006) Frozen strains of wood as natural intelligent material. In: Proceedings of 5th IUFRO symposium ‘wood structure and properties’06’, Zvolen, 2006. Arbora Publishers, Zvolen, pp 423–426

  • Ugolev BN (2011) Nanostructure changes of wood as a natural smart material. In: Nanotechnology and nanomaterials in forestry complex. Moscow State Forest University, Moscow, pp 52–73 (In Russian)

  • Ugolev BN (2014) Wood as a natural smart material. Wood Sci Technol 48(3):553–568. https://doi.org/10.1007/s00226-013-0611-2

    Article  CAS  Google Scholar 

  • Ugolev BN, Skuratov NV, Gorbacheva GA (2002) The influence of deformation prehistory upon the « memory effect » of wood. In: Proceedings of 4th IUFRO symposium ‘Wood structure and properties ‘02’, Bystra, 2002 (Arbora Publishers, Zvolen 2002) pp 145–149

  • Ugolev BN, Galkin VP, Gorbacheva GA, Axenov PA, Bazhenov AV (2007) Changes of wood nanostructure at frozen strains during drying. Proc MSFU 338:9–16 (In Russian)

    Google Scholar 

  • Ugolev B, Gorbacheva G, Belkovskiy S (2013) Quantification of wood memory effect. In: Kúdela J, Babiak M (eds) Wood the best material for mankind. pp 31–38. Proceedings of the annual IAWS meeting “Wood the Best Material for Mankind” and the 5th international symposium on the “Interaction of Wood with Various Forms of Energy” held on September 26–28, 2012 in Zvolen, Slovakia. Arbora Publishers, Zvolen. ISBN 978-80-968868-6-9

  • Wagermaier W, Kratz K, Heuchel M, Lendlein A (2010) Characterization methods for shape-memory polymers. Adv Polym Sci 226:97–145. https://doi.org/10.1007/12_2009_25

    Article  CAS  Google Scholar 

  • **e T (2010) Tunable polymer multi-shape memory effect. Nature 464:267–270. https://doi.org/10.1038/nature08863

    Article  CAS  PubMed  Google Scholar 

  • Zandersons J, Gravitis J, Zhurinsh A, Kokorevics A, Kallavus U, Suzuki CK (2004) Carbon materials obtained from self-binding sugar cane bagasse and deciduous wood residues plastics. Biomass Bioenerg 26:345–360

    Article  CAS  Google Scholar 

  • Zhao G, Zhang X, Lu TJ, Xu F (2015) Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering. Adv Funct Mater 25(36):5726–5738. https://doi.org/10.1002/adfm.201502142

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was carried out as part of the “Sustainable Raw Material Management Thematic Network—RING 2017,” EFOP-3.6.2-16-2017-00010 project in the framework of the Széchenyi 2020 Program. This project is supported by the European Union, co-financed by the European Social Fund. The authors are grateful to Yu. A. Olkhov (Ph.D.) for his help in obtaining data on the thermomechanical spectroscopy of birch and oak wood. The study was carried out at the Center for collective use of scientific equipment « Centre for physical and mechanical tests of wood » of Bauman Moscow State Technical University (National Research University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Gorbacheva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbacheva, G.A., Sanaev, V.G., Belkovskiy, S.Y. et al. Experimental research on the molecular-topological structure of oak (Quercus robur L.) and birch wood (Betula pendula Roth) and its shape-memory effect. Wood Sci Technol 54, 441–456 (2020). https://doi.org/10.1007/s00226-020-01166-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-020-01166-5

Navigation