Log in

Ablation of Stabilin-1 Enhances Bone-Resorbing Activity in Osteoclasts In Vitro

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Stabilin-1 is a transmembrane receptor that regulates molecule recycling and cell homeostasis by controlling the intracellular trafficking and participates in cell–cell adhesion and transmigration. Stabilin-1 expression is observed in various organs, including bones; however, its function and regulatory mechanisms in the bone remain unclear. In this study, we evaluated the physiological function of stabilin-1 in bone cells and tissue using a stabilin-1 knockout (Stab1 KO) mouse model. In wild-type (WT) mice, stabilin-1 was expressed in osteoblasts and osteoclasts, and its expression was maintained during osteoblast differentiation but significantly decreased after osteoclast differentiation. There was no difference in osteoblast differentiation and function, or the expression of osteoblast differentiation markers between mesenchymal stem cells isolated from Stab1 KO and WT mice. However, osteoclast differentiation marker levels demonstrated a non-significant increase and bone-resorbing activity was significantly increased in vitro in RANKL-induced osteoclasts from Stab1-deficient bone marrow macrophages (BMMs) compared with those of WT BMMs. Microcomputed tomography showed a negligible difference between WT and Stab1 KO mice in bone volume and trabecular thickness and number. Moreover, no in vivo functional defect in bone formation by osteoblasts was observed in the Stab1 KO mice. The osteoclast surface and number showed an increased tendency in Stab1 KO mice compared to WT mice in vivo, but this difference was not statistically significant. Overall, these results indicate that Stab1 does not play an essential role in in vivo bone development and bone cell function, but it does affect in vitro osteoclast maturation and function for bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396

    Article  CAS  PubMed  Google Scholar 

  2. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285:25103–25108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tanaka Y, Nakayamada S, Okada Y (2005) Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr Drug Targets Inflamm Allergy 4:325–328

    Article  CAS  PubMed  Google Scholar 

  4. Prevo R, Banerji S, Ni J, Jackson DG (2004) Rapid plasma membrane-endosomal trafficking of the lymph node sinus and high endothelial venule scavenger receptor/homing receptor stabilin-1 (FEEL-1/CLEVER-1). J Biol Chem 279:52580–52592

    Article  CAS  PubMed  Google Scholar 

  5. Kzhyshkowska J, Gratchev A, Goerdt S (2006) Stabilin-1, a homeostatic scavenger receptor with multiple functions. J Cell Mol Med 10:635–649

    Article  CAS  PubMed  Google Scholar 

  6. Qian H, Johansson S, McCourt P, Smedsrød B, Ekblom M, Johansson S (2009) Stabilins are expressed in bone marrow sinusoidal endothelial cells and mediate scavenging and cell adhesive functions. Biochem Biophys Res Commun 390:883–886

    Article  CAS  PubMed  Google Scholar 

  7. Kzhyshkowska J (2010) Multifunctional receptor stabilin-1 in homeostasis and disease. Sci World J 10:2039–2053

    Article  CAS  Google Scholar 

  8. Politz O, Gratchev A, McCourt PA, Schledzewski K, Guillot P, Johansson S, Svineng G, Franke P, Kannicht C, Kzhyshkowska J, Longati P, Velten FW, Johansson S, Goerdt S (2002) Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J 362:155–164

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirose Y, Saijou E, Sugano Y, Takeshita F, Nishimura S, Nonaka H, Chen YR, Sekine K, Kido T, Nakamura T, Kato S, Kanke T, Nakamura K, Nagai R, Ochiya T, Miyajima A (2012) Inhibition of stabilin-2 elevates circulating hyaluronic acid levels and prevents tumor metastasis. Proc Natl Acad Sci 109:4263–4268

    Article  PubMed  Google Scholar 

  10. Park SY, Kim SY, Jung MY, Bae DJ, Kim IS (2008) Epidermal growth factor-like domain repeat of stabilin-2 recognizes phosphatidylserine during cell corpse clearance. Mol Cell Biol 28:5288–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schledzewski K, Géraud C, Arnold B, Wang S, Gröne HJ, Kempf T, Wollert KC, Straub BK, Schirmacher P, Demory A, Schönhaber H, Gratchev A, Dietz L, Thierse HJ, Kzhyshkowska J, Goerdt S (2011) Deficiency of liver sinusoidal scavenger receptors stabilin-1 and -2 mice causes glomerulofibrotic nephropathy via impaired hepatic clearance of noxious blood factors. J Clin Invest 121:703–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee SJ, Park SY, Jung MY, Bae SM, Kim IS (2011) Mechanism for phosphatidylserin-dependent erythrophagocytosis in mouse liver. Blood 117:5215–5223

    Article  CAS  PubMed  Google Scholar 

  13. Kzhyshkowska J, Workman G, Cardó-Vila M, Arap W, Pasqualini R, Gratchev A, Krusell L, Goerdt S, Sage EH (2006) Novel function of alternatively activated macrophages: stabilin-1-mediated clearance of SPARC. J Immunol 176:5825–5832

    Article  CAS  PubMed  Google Scholar 

  14. Workman G, Sage EH (2011) Identification of a sequence in the matricellular protein SPARC that interacts with the scavenger receptor stabilin-1. J Cell Biochem 112:1003–1008

    Article  CAS  PubMed  Google Scholar 

  15. Cheng L, Sage EH, Yan Q (2013) SPARC fusion protein induces cellular adhesive signaling. PLoS ONE 8:e53202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. **ao W, Meng G, Zhao Y, Yuan H, Li T, Peng Y, Zhao Y, Luo M, Zhao W, Li Z, Zheng X (2014) Human secreted stabilin-1-interacting chitinase-like protein aggravates the inflammation associated with rheumatoid arthritis and is a potential macrophage inflammatory regulator in rodents. Arthritis Rheumatol 66:1141–1152

    Article  CAS  PubMed  Google Scholar 

  17. David C, Nance JP, Hubbard J, Hsu M, Binder D, Wilson EH (2012) Stabilin-1 expression in tumor associated macrophages. Brain Res 1481:71–78

    Article  CAS  PubMed  Google Scholar 

  18. Lee W, Park SY, Kim SY, Kim JE, Kim SW, Seo YK, Kim IS, Bae JS (2018) Macrophagic stabilin-1 restored disruption of vascular integrity caused by sepsis. Thromb Haemost 118:1776–1789

    Article  PubMed  Google Scholar 

  19. Erben RG (1997) Embedding of bone samples in methylmethacrylate: an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem Cytochem 45:307–313

    Article  CAS  PubMed  Google Scholar 

  20. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry nomenclature, symbols and units: report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  21. Lee JM, Lee EH, Kim IS, Kim JE (2015) Tgfbi deficiency leads to a reduction in skeletal size and degradation of the bone matrix. Calcif Tissue Int 96:56–64

    Article  CAS  PubMed  Google Scholar 

  22. Herman S, Krönke G, Schett G (2008) Molecular mechanisms of inflammatory bone damage: emerging targets for therapy. Trends Mol Med 14:245–253

    Article  CAS  PubMed  Google Scholar 

  23. Petrova NL, Petrov PK, Edmonds ME, Shanahan CM (2015) Inhibition of TNF-α reverses the pathological resorption pit profile of osteoclasts from patients with acute charcot osteoarthropathy. J Diab Res 2015:917945

    Google Scholar 

  24. Palani S, Elima K, Ekholm E, Jalkanen S, Salmi M (2016) Monocyte stabilin-1 suppresses the activation of Th1 lymphocytes. J Immunol 196:115–123

    Article  CAS  PubMed  Google Scholar 

  25. Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109:41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brekken RA, Sage EH (2000) SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol 19:569–580

    Article  CAS  PubMed  Google Scholar 

  27. Korns D, Frasch SC, Fernandez-Boyanapalli R, Henson PM, Bratton DL (2011) Modulation of macrophage efferocytosis in inflammation. Front Immunol 2:57

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu M, Chen G, Li YP (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rosset EM, Bradshaw AD (2016) SPARC/osteonectin in mineralized tissue. Matrix Biol 52–54:78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Endo-Munoz L, Evdokiou A, Saunders NA (2012) The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis. Biochim Biophys Acta 1826:434–442

    CAS  PubMed  Google Scholar 

  31. Jeganathan S, Fiorino C, Naik U, Sun HS, Harrison RE (2014) Modulation of osteoclastogenesis with macrophage M1- and M2-inducing stimuli. PLoS ONE 9:e104498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rantakari P, Patten DA, Valtonen J, Karikoski M, Gerke H, Dawes H, Laurila J, Ohlmeier S, Elima K, Hübscher SG, Weston CJ, Jalkanen S, Adams DH, Salmi M, Shetty S (2016) Stabilin-1 expression defines a subset of macrophages that mediate tissue homeostasis and prevent fibrosis in chronic liver injury. Proc Natl Acad Sci 113:9298–9303

    Article  CAS  PubMed  Google Scholar 

  33. Wu J, Henning P, Sjögren K, Koskela A, Tuukkanen J, Movérare-Skrtic S, Ohlsson C (2019) The androgen receptor is required for maintenance of bone mass in adult male mice. Mol Cell Endocrinol 479:159–169

    Article  CAS  PubMed  Google Scholar 

  34. Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K, Watanabe T, Nakamura T, Fukuda T, Yoshimura K, Yoshizawa T, Aihara K, Yamamoto Y, Nakamichi Y, Metzger D, Chambon P, Nakamura K, Kawaguchi H, Kato S (2003) Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci 100:9416–9421

    Article  CAS  PubMed  Google Scholar 

  35. Wu J, Movérare-Skrtic S, Zhang FP, Koskela A, Tuukkanen J, Palvimo JJ, Sipilä P, Poutanen M, Ohlsson C (2019) Androgen receptor SUMOylation regulates bone mass in male mice. Mol Cell Endocrinol 479:117–122

    Article  CAS  PubMed  Google Scholar 

  36. Wiren KM, Zhang XW, Toombs AR, Kasparcova V, Gentile MA, Harada S, Jepsen KJ (2004) Targeted overexpression of androgen receptor in osteoblasts: unexpected complex bone phenotype in growing animals. Endocrinology 145:3507–3522

    Article  CAS  PubMed  Google Scholar 

  37. Sato T, Kawano H, Kato S (2002) Study of androgen action in bone by analysis of androgen-receptor deficient mice. J Bone Miner Metab 20:326–330

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2016R1A2B4010043) and a Grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Korea (HI13C1874).

Author information

Authors and Affiliations

Authors

Contributions

SYK and JEK contributed to the conception and design of the research. SYK, EHL, HC, and JTK performed the experiments and analyzed the data. SYP, EKP, ISK, and JEK interpreted the results of the experiments. SYK and JEK prepared the figures, and drafted and edited the manuscript. All authors approved the manuscript.

Corresponding author

Correspondence to Jung-Eun Kim.

Ethics declarations

Conflict of interest

Soon-Young Kim, Eun-Hye Lee, Seung-Yoon Park, Hyuck Choi, Jeong-Tae Koh, Eui Kyun Park, In-San Kim, and Jung-Eun Kim declare no conflicts of interest.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving animals were approved by the Institutional Animal Care and Use Committee and in accordance with the ethical standards of the institution at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SY., Lee, EH., Park, SY. et al. Ablation of Stabilin-1 Enhances Bone-Resorbing Activity in Osteoclasts In Vitro. Calcif Tissue Int 105, 205–214 (2019). https://doi.org/10.1007/s00223-019-00552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-019-00552-x

Keywords

Navigation