Log in

Assessment of Bone Microarchitecture in Chronic Kidney Disease: A Comparison of 2D Bone Texture Analysis and High-Resolution Peripheral Quantitative Computed Tomography at the Radius and Tibia

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone microarchitecture can be studied noninvasively using high-resolution peripheral quantitative computed tomography (HR-pQCT). However, this technique is not widely available, so more simple techniques may be useful. BMA is a new 2D high-resolution digital X-ray device, allowing for bone texture analysis with a fractal parameter (Hmean). The aims of this study were (1) to evaluate the reproducibility of BMA at two novel sites (radius and tibia) in addition to the conventional site (calcaneus), (2) to compare the results obtained with BMA at all of those sites, and (3) to study the relationship between Hmean and trabecular microarchitecture measured with an in vivo 3D device (HR-pQCT) at the distal tibia and radius. BMA measurements were performed at three sites (calcaneus, distal tibia, and radius) in 14 healthy volunteers to measure the short-term reproducibility and in a group of 77 patients with chronic kidney disease to compare BMA results to HR-pQCT results. The coefficient of variation of Hmean was 1.2, 2.1, and 4.7% at the calcaneus, radius, and tibia, respectively. We found significant associations between trabecular volumetric bone mineral density and microarchitectural variables measured by HR-pQCT and Hmean at the three sites (e.g., Pearson correlation between radial trabecular number and radial Hmean r = 0.472, P < 0.001). This study demonstrated a significant but moderate relationship between 2D bone texture and 3D trabecular microarchitecture. BMA is a new reproducible technique with few technical constraints. Thus, it may represent an interesting tool for evaluating bone structure, in association with biological parameters and DXA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA et al (2005) Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 90:2787–2793

    Article  CAS  PubMed  Google Scholar 

  2. Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD (2005) Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res 20:1813–1819

    Article  PubMed  Google Scholar 

  3. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22:425–433

    Article  PubMed  Google Scholar 

  4. Majumdar S (2008) Magnetic resonance imaging for osteoporosis. Skeletal Radiol 37:95–97

    Article  PubMed  Google Scholar 

  5. Prouteau S, Ducher G, Nanyan P, Lemineur G, Benhamou L, Courteix D (2004) Fractal analysis of bone texture: a screening tool for stress fracture risk? Eur J Clin Invest 34:137–142

    Article  CAS  PubMed  Google Scholar 

  6. Bachrach LK (2006) Measuring bone mass in children: can we really do it? Horm Res 65(Suppl 2):11–16

    Article  CAS  PubMed  Google Scholar 

  7. Nickolas TL, Leonard MB, Shane E (2008) Chronic kidney disease and bone fracture: a growing concern. Kidney Int 74:721–731

    Article  PubMed  Google Scholar 

  8. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  CAS  PubMed  Google Scholar 

  9. Link TM, Majumdar S, Konermann W, Meier N, Lin JC, Newitt D et al (1997) Texture analysis of direct magnification radiographs of vertebral specimens: correlation with bone mineral density and biomechanical properties. Acad Radiol 4:167–176

    Article  CAS  PubMed  Google Scholar 

  10. Benhamou CL, Poupon S, Lespessailles E, Loiseau S, Jennane R, Siroux V et al (2001) Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 16:697–704

    Article  CAS  PubMed  Google Scholar 

  11. Lespessailles E, Gadois C, Lemineur G, Do-Huu JP, Benhamou L (2007) Bone texture analysis on direct digital radiographic images: precision study and relationship with bone mineral density at the os calcis. Calcif Tissue Int 80:97–102

    Article  CAS  PubMed  Google Scholar 

  12. Kazakia GJ, Hyun B, Burghardt AJ, Krug R, Newitt DC, de Papp AE et al (2008) In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J Bone Miner Res 23:463–474

    Article  PubMed  Google Scholar 

  13. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    Article  CAS  PubMed  Google Scholar 

  14. Bacchetta J, Boutroy S, Juillard L, Vilayphiou N, Guebre-Egziabher F, Pelletier S et al (2009) Bone imaging and chronic kidney disease: will high-resolution peripheral tomography improve bone evaluation and therapeutic management? J Ren Nutr 19:44–49

    Article  PubMed  Google Scholar 

  15. Link TM, Bauer J, Kollstedt A, Stumpf I, Hudelmaier M, Settles M et al (2004) Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol 39:487–497

    Article  PubMed  Google Scholar 

  16. Chappard D, Guggenbuhl P, Legrand E, Basle MF, Audran M (2005) Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J Bone Miner Metab 23:24–29

    Article  PubMed  Google Scholar 

  17. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC et al (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118

    Article  CAS  PubMed  Google Scholar 

  18. Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y et al (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

    Article  CAS  PubMed  Google Scholar 

  19. Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S, Munoz F, Delmas PD (2009) Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res 24:737–743

    Article  PubMed  Google Scholar 

  20. Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR et al (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58:396–399

    Article  CAS  PubMed  Google Scholar 

  21. Nickolas TL, McMahon DJ, Shane E (2006) Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol 17:3223–3232

    Article  PubMed  Google Scholar 

  22. Urena P, Bernard-Poenaru O, Ostertag A, Baudoin C, Cohen-Solal M, Cantor T et al (2003) Bone mineral density, biochemical markers and skeletal fractures in haemodialysis patients. Nephrol Dial Transplant 18:2325–2331

    Article  CAS  PubMed  Google Scholar 

  23. Jamal SA, Hayden JA, Beyene J (2007) Low bone mineral density and fractures in long-term hemodialysis patients: a meta-analysis. Am J Kidney Dis 49:674–681

    Article  PubMed  Google Scholar 

  24. Yamaguchi T, Kanno E, Tsubota J, Shiomi T, Nakai M, Hattori S (1996) Retrospective study on the usefulness of radius and lumbar bone density in the separation of hemodialysis patients with fractures from those without fractures. Bone 19:549–555

    Article  CAS  PubMed  Google Scholar 

  25. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl S1–S130

  26. Russo CR, Taccetti G, Caneva P, Mannarino A, Maranghi P, Ricca M (1998) Volumetric bone density and geometry assessed by peripheral quantitative computed tomography in uremic patients on maintenance hemodialysis. Osteoporos Int 8:443–448

    Article  CAS  PubMed  Google Scholar 

  27. Hasegawa K, Hasegawa Y, Nagano A (2004) Estimation of bone mineral density and architectural parameters of the distal radius in hemodialysis patients using peripheral quantitative computed tomography. J Biomech 37:751–756

    Article  PubMed  Google Scholar 

  28. Negri AL, Barone R, Lombas C, Bogado CE, Zanchetta JR (2006) Evaluation of cortical bone by peripheral quantitative computed tomography in continuous ambulatory peritoneal dialysis patients. Hemodial Int 10:351–355

    Article  PubMed  Google Scholar 

  29. Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 21:543–548

    Article  PubMed  Google Scholar 

  30. Obatake N, Ishimura E, Tsuchida T, Hirowatari K, Naka H, Imanishi Y et al (2007) Annual change in bone mineral density in predialysis patients with chronic renal failure: significance of a decrease in serum 1,25-dihydroxyvitamin D. J Bone Miner Metab 25:74–79

    Article  CAS  PubMed  Google Scholar 

  31. Tsuchida T, Ishimura E, Miki T, Matsumoto N, Naka H, Jono S et al (2005) The clinical significance of serum osteocalcin and N-terminal propeptide of type I collagen in predialysis patients with chronic renal failure. Osteoporos Int 16:172–179

    Article  CAS  PubMed  Google Scholar 

  32. Nickolas TL, Stein E, Cohen A, Thomas V, Staron RB, McMahon DJ et al (2010) Bone mass and microarchitecture in CKD patients with fracture. J Am Soc Nephrol 21:1371–1380

    Article  PubMed  Google Scholar 

  33. Bacchetta J, Boutroy S, Vilayphiou N, Juillard L, Guebre-Egziabher F, Rognant N et al (2010) Early impairment of trabecular microarchitecture assessed with HR-pQCT in patients with stage II–IV chronic kidney disease. J Bone Miner Res 25:849–857

    PubMed  Google Scholar 

  34. Lespessailles E, Gadois C, Kousignian I, Neveu JP, Fardellone P, Kolta S et al (2008) Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study. Osteoporos Int 19:1019–1028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Pr. Maurice Laville and Drs. Laurent Juillard, Fitsum Guebre-Egziabher, Nicolas Rognant, Catherine Chaubo, and Alexandre Klein (Department of Nephrology, Hôpital Edouard Herriot, Réseau TIRCEL, Lyon, France) for help in patient recruitment. We also thank Dr. Clotilde Gadois (D3A Medical Systems) for her scientific support. This work was partly supported by a 2007 Société Française de Pédiatrie/Archives de Pédiatrie educational grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justine Bacchetta.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacchetta, J., Boutroy, S., Vilayphiou, N. et al. Assessment of Bone Microarchitecture in Chronic Kidney Disease: A Comparison of 2D Bone Texture Analysis and High-Resolution Peripheral Quantitative Computed Tomography at the Radius and Tibia. Calcif Tissue Int 87, 385–391 (2010). https://doi.org/10.1007/s00223-010-9402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9402-z

Keywords

Navigation