Log in

The effects of aging on the distribution and strength of correlated neural inputs to postural muscles during unperturbed bipedal stance

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The present study investigated the effects of aging on the distribution of common descending neural drives to main postural muscles acting on the ankle, knee, hip, and lower trunk. The presence, distribution, and strength of these drives were assessed using intermuscular coherence estimations at a low-frequency band (0–55 Hz). Ten healthy older adults (68.7 ± 3.5 years) with no recent history of falls and ten healthy younger adults (26.8 ± 2.7 years) performed bipedal stances with eyes either opened or closed. Electromyographic (EMG) signals of six postural muscles were recorded. Estimations of intermuscular coherence were obtained from fifteen muscle pairs and four muscle groups. In general, single-pair and pooled coherence analyzes revealed significant levels of signal synchronization within 1–10 Hz. Significant common drives to anterior, posterior, and antagonist muscle groups were observed for both cohorts of participants. However, older participants showed significantly stronger EMG–EMG synchronization in the frequency domain compared to younger participants. It seems that age-related sarcopenia, visual-vestibular-proprioceptive decline, cortical activation increase, presynaptic inhibition modulation decrease, and co-contraction increase had a major impact on strengthening the common drives to the aforementioned muscle groups. Differently from young adults, the absence of visual inputs did not reduce the magnitude of signal synchronization in older adults. These results suggest that the aging central nervous system seems to organize similar arrangements of common drives to postural antagonist muscles at different joints, and to postural muscles pushing the body either forward or backward when visual information is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amjad AM, Halliday DM, Rosenberg JR, Conway BA (1997) An extended difference of coherence test for comparing and combining several independent coherence estimates: theory and application to the study of motor units and physiological tremor. J Neurosci Methods 73:69–79

    Article  CAS  PubMed  Google Scholar 

  • Assländer L, Peterka RJ (2014) Sensory reweighting dynamics in human postural control. J Neurophysiol 111(9):1852–1864

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjuya N, Melzer I, Kaplanski J (2004) Aging-induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. J Gerontol 59A(2):166–171

    Article  Google Scholar 

  • Bernstein NA (1947) On the construction of movements. Medgiz, Moscow

    Google Scholar 

  • Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  • Boonstra TW, Daffertshofer A, Roerdink M, Flipse I, Groenewoud K, Beek PJ (2009) Bilateral motor unit synchronization of leg muscles during a simple dynamic balance task. Eur J Neurosci 29(3):613–622

    Article  PubMed  Google Scholar 

  • Boonstra TW, Daffertshofer A, van Ditshuizen JC, van den Heuvel MRC, Hofman C, Willigenburg NW, Beek PJ (2008a) Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs. J Electromyogr Kinesiol 18:717–731

    Article  CAS  PubMed  Google Scholar 

  • Boonstra TW, Roerdink M, Daffertshofer A, van Vugt B, van Werven G, Beek PJ (2008b) Low-alcohol doses reduce common 10- to 15-Hz input to bilateral leg muscles during quiet standing. J Neurophysiol 100(Pt 4):2158–2164

    Article  CAS  PubMed  Google Scholar 

  • Criswell E (2010) Cram’s introduction to surface electromyography, 2nd edn. Jones and Bartlett Learning, New York, p 412

    Google Scholar 

  • Danna-dos-Santos A, Boonstra TW, Degani AM, Cardoso VS, Magalhães AT, Mochizuki L, Leonard CT (2014) Multi-muscle control during bipedal stance: an EMG-EMG analysis approach. Exp Brain Res 232(1):75–87

    Article  PubMed  Google Scholar 

  • Danna-dos-Santos A, Degani AM, Boonstra TW, Mochizuki L, Harney AL, Schemeckpeper MM, Tabor LC, Leonard CT (2015) The influence of visual information on multi-muscle control during quiet stance: a spectral analysis approach. Exp Brain Res 233:657–669

    Article  PubMed  Google Scholar 

  • Danna-Dos-Santos A, Degani AM, Latash ML (2007) Anticipatory control of head posture. Clin Neurophysiol 118(8):1802–1814

    Article  PubMed  PubMed Central  Google Scholar 

  • Danna-dos-Santos A, Degani AM, Latash ML (2008) Flexible muscle modes and synergies in challenging whole-body tasks. Exp Brain Res 189:171–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Danna-dos-Santos A, Poston B, Jesunathadas M, Bobich LR, Hamm T, Santello M (2010) Influence of fatigue on hand muscle coordination and EMG–EMG coherence during three-digit gras**. J Neurophysiol 104:3576–3587

    Article  PubMed  PubMed Central  Google Scholar 

  • Danna-dos-Santos A, Shapkova EY, Shapkova AL, Degani AM, Latash ML (2009) Postural control during upper body locomotor like movements: similar synergies based on dissimilar muscle modes. Exp Brain Res 193:568–579

    Article  Google Scholar 

  • De Luca CJ, Erim Z (2002) Common drive in motor units of a synergistic muscle pair. J Neurophysiol 87:2200–2204

    Article  PubMed  Google Scholar 

  • Degani AM, Leonard CT, Danna-dos-Santos A (2017) The use of intermuscular coherence analysis as a novel approach to detect age-related changes on postural muscle synergy. Neurosci Lett 656:108–113

    Article  CAS  PubMed  Google Scholar 

  • Doherty TJ (2003) Aging and sarcopenia. J Appl Physiol 95:1717–1727

    Article  CAS  PubMed  Google Scholar 

  • Farmer SF (1998) Rhythmicity, synchronization and binding in human and primate motor systems. J Physiol 509(pt1):3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer SF, Bremner FD, Halliday DM, Rosenberg JR, Stephens JA (1993) The frequency content of common synaptic inputs to motoneurons studied during voluntary isometric contraction in man. J Physiol 470:127–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelfand IM, Latash ML (2002) On the problem of adequate language in biology. In: Latash ML (ed) Progress in motor control 2, structure-function relations in voluntary movements. Human Kinetics, Champagne, pp 209–227

    Google Scholar 

  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14:21–36

    Article  CAS  PubMed  Google Scholar 

  • Horak FB, Shupert CL, Mirka A (1989) Components of postural dyscontrol in the elderly: a review. Neurobiol Aging 10(6):727–738

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi T, DeVita P (2000) Muscle pre- and coactivity during downward step** are associated with legs stiffness in aging. J Electomyogr Kinesiol 10:117–126

    Article  CAS  Google Scholar 

  • Inglin B, Woollacott M (1988) Age-related changes in anticipatory postural adjustments associated with arm movements. J Gerontol 43(4):M105–M113

    Article  CAS  PubMed  Google Scholar 

  • Johnston JA, Winges SA, Santello M (2005) Periodic modulation of motor-unit activity in extrinsic hand muscles during multi-digit gras**. J Neurophysiol 94:206–218

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabbaligere R, Lee B-C, Layne CS (2017) Balancing sensory inputs: sensory reweighting of ankle proprioception and vision during a bipedal posture task. Gait Posture 52:244–250

    Article  PubMed  Google Scholar 

  • Kamen G, De Luca CJ (1992) Firing rate interactions among human orbicularis motor units. Int J Neurosci 64(1–4):167–175

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita H, Francis PR (1996) A comparison of prehension force control in young and elderly individuals. Eur J Appl Physiol Occup Physiol 74:450–460

    Article  CAS  PubMed  Google Scholar 

  • Klass M, Baudry S, Duchateau J (2007) Voluntary activation during maximal contraction with advancing age: a brief review. Eur J Appl Physiol 100:543–551

    Article  PubMed  Google Scholar 

  • Klein CS, Rice CL, Marsh GD (2001) Normalized force, activation, and coactivation in the arm muscles of young and old men. J Appl Physiol 91:1341–1349

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2003) Muscle synergies during shifts of the center of pressure by standing persons. Exp Brain Res 152:281–292

    Article  PubMed  Google Scholar 

  • Latash ML, Levin MF, Scholz JP, Schöner G (2010) Motor control theories and their applications. Medicine (Kaunas) 46(6):382–392

    Google Scholar 

  • Lee Y-J, Chen B, Aruin AS (2015) Older adults utilize less efficient postural control when performing pushing task. J Electromyogr Kinesiol 25:966–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin S-I, Woollacott MH (2002) Postural muscle responses following changing balance threats in young, stable older, and unstable older adults. J Mot Behav 34(1):37–44

    Article  PubMed  Google Scholar 

  • Manchester D, Woollacott MH, Zederbauer-Hylton N, Oscar M (1989) Visual, vestibular and somatosensory contributions to balance control in older adult. J Gerontol Med Sci 44:M118–M127

    Article  CAS  Google Scholar 

  • Masani K, Popovic MR, Nakazawa K, Kouzaki M, Nozaki D (2003) Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. J Neurophysiol 90:3774–3782

    Article  PubMed  Google Scholar 

  • Mian OS, Thom JM, Ardigo IP, Narici MV, Minetti AE (2006) Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiol (Osf) 186:127–139

    Article  CAS  Google Scholar 

  • Mima T, Simpkins N, Oluwatimilehin T, Hallett M (1999) Force level modulates human cortical oscillatory activities. Neurosci Lett 275:77–80

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki G, Semmler JG, Ivanova TD, Garland SJ (2006) Low-frequency common modulation of soleus motor unit discharge is enhanced during postural control in humans. Exp Brain Res 175:584–595

    Article  CAS  PubMed  Google Scholar 

  • Moore KL, Dalley AF, Agur AMR (2013) Clinically oriented anatomy. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  • Nagai K, Yamada M, Mori S, Tanaka B, Uemura K, Aoyama T, Ichihashi N, Tsuboyama T (2013) Effect of the muscle coactivation during quiet standing on dynamic postural control in older adults. Arch Gerontol Geriatr 56:129–133

    Article  PubMed  Google Scholar 

  • Nagai K, Yamada M, Uemura K, Yamada Y, Ichihashi N, Tsuboyama T (2011) Differences in muscle coactivation during postural control between healthy older and young adults. Arch Gerontol Geriatr 53:338–343

    Article  PubMed  Google Scholar 

  • Nakao M, Inoue Y, Murakami H (1989) Aging process of leg muscle endurance in males and females. Eur J Appl Physiol Occup Physiol 59:209–214

    Article  CAS  PubMed  Google Scholar 

  • Nashner L, Berthoz A (1978) Visual contribution to rapid motor responses during postural control. Brain Res 150:403–407

    Article  CAS  PubMed  Google Scholar 

  • Neto OP, Christou EA (2010) Rectification of the EMG signal impairs the identification of oscillatory input to the muscle. J Neurophysiol 103:1093–1103

    Article  PubMed  Google Scholar 

  • O’Sullivan SB, Schmitz TJ (2006) Physical Rehabilitation, 5th edn. F. A. Davis Company, Philadelphia, p 776

    Google Scholar 

  • Obata H, Abe MO, Masani K, Nakazawa K (2014) Modulation between bilateral legs and within unilateral muscle synergists of postural muscle activity changes with development and aging. Exp Brain Res 232:1–11

    Article  PubMed  Google Scholar 

  • Olafsdottir H, Yoshida N, Zatsiorsky VM, Latash ML (2007) Elderly show decreased adjustments of motor synergies in preparation to action. Clin Biomech (Bristol, Avon) 22:44–51

    Article  Google Scholar 

  • Papegaaij S, Taube W, Baudry S, Otten E, Hortobagyi T (2014) Aging causes a reorganization of cortical and spinal control of posture. Front Aging Neurosci 6:28. https://doi.org/10.3389/fnagi.2014.00028

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasma JH, Engelhart D, Maier AB, Schouten AC, van der Kooij H, Meskers CG (2015) Changes in sensory reweighting of proprioceptive information during standing balance with age and disease. J Neurophysiol 114(6):3220–3233. https://doi.org/10.1152/jn.00414.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118

    Article  CAS  PubMed  Google Scholar 

  • Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423

    Article  PubMed  Google Scholar 

  • Poston B, Danna-dos-Santos A, Jesunathadas M, Hamm TM, Santello M (2010) Force-independent distribution of correlated neural inputs to hand muscles during three-digit gras**. J Neurophysiol 104:1141–1154

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53:1–31

    Article  CAS  PubMed  Google Scholar 

  • Roubernoff R (2001) Origins and clinical relevance of sarcopenia. Can J Appl Physiol 26(1):78–89

    Article  Google Scholar 

  • Roubernoff R (2000) Sarcopenia and its implications for the elderly. Eur J Clin Nutr 54(3):40–47

    Article  Google Scholar 

  • Santello M, Fuglevand AJ (2004) Role of across-muscle motor unit synchrony for the coordination of forces. Exp Brain Res 159:501–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Schimitz A, Silder A, Heiderscheit B, Mahoney J, Thelen DG (2008) Differences in lower-extremity muscular activation during walking between healthy older and young adults. J Electromyogr Kinesiol 19:1085–1091

    Article  Google Scholar 

  • Semmler JG, Sale MV, Meyer FG, Nordstrom MA (2004) Motor-unit coherence and its relation with synchrony are influenced by training. J Neurophysiol 92:3320–3331

    Article  PubMed  Google Scholar 

  • Shim JK, Lay BS, Zatsiorsky VM, Latash ML (2004) Age-related changes in finger coordination in static prehension tasks. J Appl Physiol 97:213–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML (2005) The emergence and disappearance of multi-digit synergies during force-production tasks. Exp Brain Res 164:260–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinohara M, Latash ML, Zatsiorsky VM (2003a) Age effects on force produced by intrinsic and extrinsic hand muscles and finger interaction during MVC tasks. J Appl Physiol 95:1361–1369

    Article  PubMed  Google Scholar 

  • Shinohara M, Li S, Kang N, Zatsiorsky VM, Latash ML (2003b) Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks. J Appl Physiol 94:259–270

    Article  PubMed  Google Scholar 

  • Shumway-Cook A, Woolllacott MH (2011) Motor Control: translating research into clinical practice, 4th edn. Lippincott Williams and Wilkins, Philadelphia, p 656p

    Google Scholar 

  • Tang PF, Woollacott MH (1998) Inefficient postural responses to unexpected slips during walking in older adults. J Gerontol Series A Biol Sci Med Sci 53(6):471–480

    Article  Google Scholar 

  • Teasdale N, Simoneau M (2001) Attentional demands for postural control: the effects of aging and sensory reintegration. Gait Posture 14:203–210. https://doi.org/10.1016/S0966-6362(01)00134-5

    Article  CAS  PubMed  Google Scholar 

  • Tsai Y-C, Hsieh L-F, Yang S (2014) Age-related changes in posture response under a continuous and unexpected perturbation. J Biomech 47(2):482–490

    Article  PubMed  Google Scholar 

  • Turvey M (1990) Coordination. Am Psychol 45:285–325

    Article  Google Scholar 

  • Vallbo AB, Wessberg J (1993) Organization of motor output in slow finger movements in man. J Physiol 469:673–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viitasalo J, Era P, Leskinen AL, Heikkinen E (1985) Muscular strength and anthropometry in random samples of men aged 31–35, 51–55 and 71–75 years. Ergonomics 28:1563–1574

    Article  Google Scholar 

  • Watanabe T, Saito K, Ishida K, Tanabe S, Nojima I (2018a) Age-related declines in the ability to modulate common input to bilateral and unilateral plantar flexors during forward postural lean. Front Hum Neurosci 12:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Saito K, Ishida K, Tanabe S, Nojima I (2018b) Coordination of plantar flexor muscles during bipedal and unipedal stances in young and elderly adults. Exp Brain Res 236:1229–1239

    Article  PubMed  Google Scholar 

  • Watanabe T, Saito K, Ishida K, Tanabe S, Nojima I (2018c) Fatigue-induced decline in low-frequency common input to bilateral and unilateral plantar flexors during quiet standing. Neurosci Lett 686:193–197

    Article  CAS  PubMed  Google Scholar 

  • Wiesmeier IK, Dalin D, Maurer C (2015) Elderly use proprioception rather than visual and vestibular cues for postural motor control. Front Aging Neurosci 7:97. https://doi.org/10.3389/fnagi.2015.00097

    Article  PubMed  PubMed Central  Google Scholar 

  • Winges SA, Kornatz KW, Santello M (2008) Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold. J Neurophysiol 99:1119–1126

    Article  PubMed  PubMed Central  Google Scholar 

  • Woollacott M, Shumway-Cook A (1990) Changes in posture control across the life span-a systems approach. Phys Ther 70(12):799–807

    Article  CAS  PubMed  Google Scholar 

  • Woollacott M, Inglin B, Manchester, (1988) Response preparation and posture control. Neuromuscular changes in the older adult. Ann N Y Acad Sci 515:42–53

    Article  CAS  PubMed  Google Scholar 

  • Zatsiorsky VM, Gregory RW, Latash ML (2002) Force and torque production in static multifinger prehension: biomechanics and control. I Biomech Biol Cybern 87:50–57

    Article  Google Scholar 

Download references

Acknowledgements

All participants for their voluntary cooperation in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana M. Degani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Francesco Lacquaniti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degani, A.M., Leonard, C.T. & Danna-dos-Santos, A. The effects of aging on the distribution and strength of correlated neural inputs to postural muscles during unperturbed bipedal stance. Exp Brain Res 238, 1537–1553 (2020). https://doi.org/10.1007/s00221-020-05837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05837-4

Keywords

Navigation