Log in

Effect of modified atmosphere packaging (MAP) on health-promoting compounds, chlorophylls and antioxidant capacity of three fig cultivars (Ficus carica L.)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Effects of three biaxially oriented polypropylene (BOPP) microperforated films of different transmission rates [3 (M50), 5 (M30), and 16 (M10) holes; Ø = 100 µm] on the maintenance of colour and bioactive compounds profile of three fig cultivars were studied in comparison with macroperforated film (5 holes; ø = 9 mm) during cold storage. Figs from ‘Cuello Dama Negro’, ‘Cuello Dama Blanco’ and ‘San Antonio’ cultivars were stored at 0 ℃ and 90–95% relativity humidity in the dark for 21 days; and were sampled at 0, 7, 14, 17, and 21 days. Skin and flesh colour, total antioxidant activity (both hydrophilic and lipophilic fractions), chlorophylls and phenolic compounds were measured. Results revealed that microperforated film packaging (especially M50) helped maintaining skin colour during storage, delayed senescence of fruit, and enhanced the concentrations of cyanidin 3-O-rutinoside (up to ninefold increase in the skin) and quercetin 3-O-rutinoside (2- to 20-fold increase in concentration in the skin, and up to fivefold increase in the flesh), the main phenolic compounds found in dark skin figs. On another part, this was the first time that lipophilic antioxidant activity was measured in figs, obtaining values between 0.25 and 0.61 mmol kg−1 for skin and flesh, respectively. Obtained results were in concordance with other fruits studied by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Karantzi AD, Kafkaletou M, Christopoulos MV, Tsantili E (2021) Peel colour and flesh phenolic compounds at ripening stages in pollinated commercial varieties of fig (Ficus carica L.) fruit grown in Southern Europe. J Food Meas Charact 15:2049–2063. https://doi.org/10.1007/s11694-020-00796-4

    Article  Google Scholar 

  2. Suttisansanee U, Pitchakarn P, Ting P et al (2021) Health-promoting bioactivity and in vivo genotoxicity evaluation of a hemiepiphyte fig, Ficus dubia. Food Sci Nutr 9:2269–2279. https://doi.org/10.1002/fsn3.2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wojdyło A, Nowicka P, Carbonell-Barrachina ÁA, Hernández F (2016) Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. J Funct Foods 25:421–432. https://doi.org/10.1016/j.jff.2016.06.015

    Article  CAS  Google Scholar 

  4. Serradilla M, García-Viguera C, Martín A et al (2022) The role of fig in human nutrition. In: Flasihman M, Aksoy U (eds) Advances in fig research and sustainable production. CABI, pp 387–400

    Chapter  Google Scholar 

  5. Palma A, Muntoni M, D’Aquino S (2023) Influence of modified atmosphere packaging on post-harvest physiology, overall quality, and bioactive compounds during cold storage and shelf-life of “Tondo Nero” figs (Ficus carica L.). Food Packag Shelf Life 35:101030. https://doi.org/10.1016/j.fpsl.2023.101030

    Article  CAS  Google Scholar 

  6. Harzallah A, Bhouri AM, Amri Z et al (2016) Phytochemical content and antioxidant activity of different fruit parts juices of three figs (Ficus carica L.) varieties grown in Tunisia. Ind Crops Prod 83:255–267. https://doi.org/10.1016/j.indcrop.2015.12.043

    Article  CAS  Google Scholar 

  7. Russo F, Caporaso N, Paduano A, Sacchi R (2014) Phenolic compounds in fresh and dried figs from Cilento (Italy), by considering breba crop and full crop, in comparison to Turkish and Greek dried figs. J Food Sci 79:C1278–C1284. https://doi.org/10.1111/1750-3841.12505

    Article  CAS  PubMed  Google Scholar 

  8. Vallejo F, Marín JG, Tomás-Barberán FA (2012) Phenolic compound content of fresh and dried figs (Ficus carica L.). Food Chem 130:485–492. https://doi.org/10.1016/j.foodchem.2011.07.032

    Article  CAS  Google Scholar 

  9. Cramer GR, Urano K, Delrot S et al (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kebal L, Pokajewicz K, Djebli N et al (2022) HPLC-DAD profile of phenolic compounds and In vitro antioxidant activity of Ficus carica L. fruits from two Algerian varieties. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2022.113738

    Article  PubMed  Google Scholar 

  11. dos Anjos Cruz JM, Corrêa RF, Lamarão CV et al (2022) Ficus spp. fruits: bioactive compounds and chemical, biological and pharmacological properties. Food Res Int 152:110928

    Article  Google Scholar 

  12. Souza M, Artés F, Jemni M et al (2022) Combined effect of UV–C and passive modified atmosphere packaging to preserve the physicochemical and bioactive quality of fresh figs during storage. Postharvest Biol Technol. https://doi.org/10.1016/j.postharvbio.2022.112106

    Article  Google Scholar 

  13. Wang C, Du J, Hou D et al (2023) Quality retention and delay postharvest senescence of figs (Ficus carica L.) using 1-methylcyclopropene and modified atmosphere packaging during cold storage. Food Biosci. https://doi.org/10.1016/j.fbio.2023.102748

    Article  Google Scholar 

  14. Bouzo CA, Travadelo M, Gariglio NF (2012) Effect of different packaging materials on postharvest quality of fresh fig fruit. Int J Agric Biol 14:821–825

    CAS  Google Scholar 

  15. del Villalobos M, C, Serradilla MJ, Martín A, et al (2014) Use of equilibrium modified atmosphere packaging for preservation of “San Antonio” and “Banane” breba crops (Ficus carica L.). Postharvest Biol Technol 98:14–22. https://doi.org/10.1016/j.postharvbio.2014.07.001

    Article  CAS  Google Scholar 

  16. Valero D, Serrano M (2010) Postharvest biology and technology for preserving fruit quality. CRC Press, Boca Raton

    Book  Google Scholar 

  17. D’Aquino S, Palma A, Schirra M et al (2010) Influence of film wrap** and fludioxonil application on quality of pomegranate fruit. Postharvest Biol Technol 55:121–128. https://doi.org/10.1016/j.postharvbio.2009.08.006

    Article  CAS  Google Scholar 

  18. Fawole OA, Opara UL (2013) Effects of storage temperature and duration on physiological responses of pomegranate fruit. Ind Crops Prod 47:300–309. https://doi.org/10.1016/j.indcrop.2013.03.028

    Article  CAS  Google Scholar 

  19. Peña ME, Artés-Hernández F, Aguayo E et al (2013) Effect of sustained deficit irrigation on physicochemical properties, bioactive compounds and postharvest life of pomegranate fruit (cv. ’Mollar de Elche’). Postharvest Biol Technol 86:171–180. https://doi.org/10.1016/j.postharvbio.2013.06.034

    Article  CAS  Google Scholar 

  20. Rosales R, Romero I, Fernandez-Caballero C et al (2016) Low temperature and short-term high-CO2 treatment in postharvest storage of table grapes at two maturity stages: Effects on transcriptome profiling. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01020

    Article  PubMed  PubMed Central  Google Scholar 

  21. del Villalobos M, C, Serradilla MJ, Martín A, et al (2016) Preservation of different fig cultivars (Ficus carica L.) under modified atmosphere packaging during cold storage. J Sci Food Agric 96:2103–2115. https://doi.org/10.1002/jsfa.7326

    Article  CAS  PubMed  Google Scholar 

  22. Fernández-León MF, Fernández-León AM, Lozano M et al (2013) Retention of quality and functional values of broccoli “Parthenon” stored in modified atmosphere packaging. Food Control 31:302–313. https://doi.org/10.1016/j.foodcont.2012.10.012

    Article  CAS  Google Scholar 

  23. Fernández-León MF, Lozano M, Ayuso MC et al (2010) Fast and accurate alternative UV-chemometric method for the determination of chlorophyll A and B in broccoli (Brassica oleracea Italica) and cabbage (Brassica oleracea Sabauda) plants. J Food Compos Anal 23:809–813. https://doi.org/10.1016/j.jfca.2010.03.024

    Article  CAS  Google Scholar 

  24. Chen J, Shu Y, Chen Y et al (2022) Evaluation of antioxidant capacity and gut microbiota modulatory effects of different kinds of berries. Antioxidants. https://doi.org/10.3390/antiox11051020

    Article  PubMed  PubMed Central  Google Scholar 

  25. Giuffrè AM (2019) Bergamot (Citrus bergamia, Risso) The effects of cultivar and harvest date on functional properties of juice and cloudy juice. Antioxidants. https://doi.org/10.3390/antiox8070221

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cano A, Arnao MB (1998) An end-point method for estimation of the total antioxidant activity in plant material. Phytochem Anal 9:196–202

    Article  CAS  Google Scholar 

  27. Teixeira DM, Canelas VC, do Canto AM et al (2009) HPLC-DAD quantification of phenolic compounds contributing to the antioxidant: Activity of maclura pomifera, ficus carica and ficus elastica extracts. Anal Lett 42:2986–3003. https://doi.org/10.1080/00032710903276646

    Article  CAS  Google Scholar 

  28. Lima VLAG, Mélo EA, Maciel MIS et al (2005) Total phenolic and carotenoid contents in acerola genotypes harvested at three ripening stages. Food Chem 90:565–568. https://doi.org/10.1016/j.foodchem.2004.04.014

    Article  CAS  Google Scholar 

  29. Pereira C, Serradilla MJ, Martín A et al (2015) Agronomic behaviour and quality of six fig cultivars for fresh consumption. Sci Hortic 185:121–128. https://doi.org/10.1016/j.scienta.2015.01.026

    Article  Google Scholar 

  30. Dassamiour S, Vidal V, Laurent S et al (2018) Effect of gaseous pretreatment on enzymatic browning of mature date after cold storage. Fruits 73:243–251. https://doi.org/10.17660/th2018/73.4.6

    Article  CAS  Google Scholar 

  31. Selcuk N, Erkan M (2014) Changes in antioxidant activity and postharvest quality of sweet pomegranates cv. Hicrannar under modified atmosphere packaging. Postharvest Biol Technol 92:29–36. https://doi.org/10.1016/j.postharvbio.2014.01.007

    Article  CAS  Google Scholar 

  32. Li Y, He N, Hou J et al (2018) Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front Ecol Evol. https://doi.org/10.3389/fevo.2018.00064

    Article  Google Scholar 

  33. Lee JS, Chandra D (2018) Effects of different packaging materials and methods on the physical, biochemical and sensory qualities of lettuce. J Food Sci Technol 55:1685–1694. https://doi.org/10.1007/s13197-018-3081-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pereira C, López-Corrales M, Serradilla MJ et al (2017) Influence of ripening stage on bioactive compounds and antioxidant activity in nine fig (Ficus carica L.) varieties grown in Extremadura, Spain. J Food Compos Anal 64:203–212. https://doi.org/10.1016/j.jfca.2017.09.006

    Article  CAS  Google Scholar 

  35. Crisosto CH, Bremer V, Ferguson L, Crisosto GM (2010) Evaluating quality attributes of four fresh fig (Ficus carica L.) cultivars harvested at two maturity stages. HortScience 45:707–710. https://doi.org/10.21273/hortsci.45.4.707

    Article  Google Scholar 

  36. Díaz-Mula HM, Zapata PJ, Guillén F et al (2011) Modified atmosphere packaging of yellow and purple plum cultivars. 2. Effect on bioactive compounds and antioxidant activity. Postharvest Biol Technol 61:110–116. https://doi.org/10.1016/j.postharvbio.2011.02.012

    Article  CAS  Google Scholar 

  37. Villalobos M, Martin A, Ruiz-Moyano S et al (2015) Effect of modified atmosphere packaging on the antioxidant activity and total phenolic content in “Albacor” figs. Acta Hortic 1079:573

    Article  Google Scholar 

  38. Mele MA, Islam MZ, Baek JP, Kang HM (2017) Quality, storability, and essential oil content of Ligularia fischeri during modified atmosphere packaging storage. J Food Sci Technol 54:743–750. https://doi.org/10.1007/s13197-017-2514-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lara I, Camats JA, Comabella E, Ortiz A (2015) Eating quality and health-promoting properties of two sweet cherry (Prunus avium L.) cultivars stored in passive modified atmosphere. Food Sci Technol Int 21:133–144. https://doi.org/10.1177/1082013213518544

    Article  PubMed  Google Scholar 

  40. Hssaini L, Hernandez F, Viuda-Martos M et al (2021) Survey of phenolic acids, flavonoids and in vitro antioxidantpotency between fig peels and pulps: chemical andchemometric approach. Molecules 26:2574. https://doi.org/10.3390/molecules26092574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lashkari E (2022) Effect of modified atmosphere packaging (MAP) on the stability of anthocyanins and degradation of phenolic compounds during postharvest storage of pomegranate fruit. Food Nutr Sci 13:316–335. https://doi.org/10.4236/fns.2022.133024

    Article  CAS  Google Scholar 

  42. Lei Ting T, Qian J, Yin C (2022) Equilibrium modified atmosphere packaging on postharvest quality and antioxidant activity of strawberry. Int J Food Sci Technol 57:7125–7134. https://doi.org/10.1111/ijfs.16052

    Article  CAS  Google Scholar 

  43. Dorostkar M, Moradinezhad F, Ansarifar E (2022) Influence of active modified atmosphere packaging pre-treatment on shelf life and quality attributes of cold stored apricot fruit. Int J Fruit Sci 22:402–413. https://doi.org/10.1080/15538362.2022.2047137

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to M. Cabrero and J. Barneto for technical assistance. Financial support for this research was provided by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ministerio de Ciencia e Innovación (Spain) (Project Grant RTA 2010–00123-C02-02). M.C.V. is the beneficiary of a pre-doctoral grant PD10140 from the Extremadura regional government (Spain). M.P.V. thanks the award of grant JDC2022-049532-I funded by MCIN/AEI /https://doi.org/10.13039/501100011033 and by European Union NextGenerationEU/PRTR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Joaquín Serradilla.

Ethics declarations

Conflict of interest

Authors declare no competing interests that are relevant to the content of the article.

Compliance with ethics requirements

This study does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 304 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalobos, M.d., Martín, A., Serradilla, M.J. et al. Effect of modified atmosphere packaging (MAP) on health-promoting compounds, chlorophylls and antioxidant capacity of three fig cultivars (Ficus carica L.). Eur Food Res Technol (2024). https://doi.org/10.1007/s00217-024-04574-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00217-024-04574-0

Keywords

Navigation