Log in

Characterization of endogenous peptides from Dromedary and Bactrian camel milk

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Camel milk has both nutritional value and therapeutic effects due to its bioactive components, including proteins and peptides. This study characterize endogenous peptide and potential bioactivity in both Dromedary and Bactrian camel by peptidomics techniques. In total, 622 parent protein from 8393 peptides were identified from camel milk, of which 208 proteins from Dromedary and 464 proteins from Bactrian. After filtration, 4464 endogenous peptides were quantified with 459 peptides were common in two breeds. Finally, 170 peptides were significantly different between Dromedary and Bactrian camel milk, which derived from 27 proteins, including osteopontin, lactoperoxidase up-regulated in Dromedary camel milk and butyophilin subfamily member A1, perilicin, fatty acids synthase up-regulated in Bactrian camel milk. Peptide ranker showed that 14.6% and 15.7% quantified peptides from Dromedary and Bactrian has bioactivity, which were dominated by dipeptidyl peptidase IV inhibitor (39.93%), followed by ACE inhibitor (34.85%) and anti-oxidative activity (8.69%). In sum, although Dromedary and Bactrian camel milk had significantly differences in qualitative and quantitative level of endogenous peptides, they had similarity in bioactivity including anti-diabetic, anti-hypertensive, and anti-oxidative function. The result of this study suggest that endogenous peptides may also contribute to the therapeutic benefits of camel milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Park YW, Haenlein GFW (2013) Milk and dairy products in human nutrition: production, composition and health: chapter 26 camel milk. Wiley, Hoboken, pp 578–593

    Book  Google Scholar 

  2. Farah MJ (1996) Is face recognition “special”? Evidence from neuropsychology. Behav Brain Res 76(1–2):181–189. https://doi.org/10.1016/0166-4328(95)00198-0

    Article  CAS  PubMed  Google Scholar 

  3. Maryniak NZ, Hansen EB (2018) Comparison of the allergenicity and immunogenicity of camel and cow’s milk—a study in brown norway rats. Nutrients. https://doi.org/10.3390/nu10121903

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ayyash M, Al-Dhaheri AS, Al Mahadin S, Kizhakkayil J, Abushelaibi A (2018) In vitro investigation of anticancer, antihypertensive, antidiabetic, and antioxidant activities of camel milk fermented with camel milk probiotic: a comparative study with fermented bovine milk. J Dairy Sci 101(2):900–911. https://doi.org/10.3168/jds.2017-13400

    Article  CAS  PubMed  Google Scholar 

  5. Ayyash M, Al-Nuaimi AK, Al-Mahadin S, Liu SQ (2018) In vitro investigation of anticancer and ACE-inhibiting activity, alpha-amylase and alpha-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: a comparative study with fermented bovine milk. Food Chem 239:588–597. https://doi.org/10.1016/j.foodchem.2017.06.149

    Article  CAS  PubMed  Google Scholar 

  6. el Agamy EI, Ruppanner R, Ismail A, Champagne CP, Assaf R (1992) Antibacterial and antiviral activity of camel milk protective proteins. J Dairy Res 59(2):169–175. https://doi.org/10.1017/s0022029900030417

    Article  PubMed  Google Scholar 

  7. Mudgil P, Kamal H, Yuen GC, Maqsood S (2018) Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem 259:46–54. https://doi.org/10.1016/j.foodchem.2018.03.082

    Article  CAS  PubMed  Google Scholar 

  8. Mirmiran P, Ejtahed HS, Angoorani P, Eslami F, Azizi F (2017) Camel milk has beneficial effects on diabetes mellitus: a systematic review. Int J Endocrinol Metab 15(2):e42150

    PubMed  PubMed Central  Google Scholar 

  9. Ayoub MA, Palakkott AR, Ashraf A, Iratni R (2018) The molecular basis of the anti-diabetic properties of camel milk. Diabetes Res Clin Pract 146:305–312. https://doi.org/10.1016/j.diabres.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  10. Conesa C, Sánchez L, Rota C, Pérez MD, Calvo M, Farnaud S, Evans RW (2008) Isolation of lactoferrin from milk of different species: calorimetric and antimicrobial studies. Comp Biochem Physiol B Biochem Mol Biol 150(1):131–139. https://doi.org/10.1016/j.cbpb.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  11. Almehdar HA, El-Baky NA, Alhaider AA, Almuhaideb SA, Alhaider AA, Albiheyri RS, Uversky VN, Redwan EM (2020) Bacteriostatic and bactericidal activities of camel lactoferrins against Salmonella enterica serovar typhi. Probiotics Antimicrob Proteins 12(1):18–31. https://doi.org/10.1007/s12602-019-9520-5

    Article  CAS  PubMed  Google Scholar 

  12. Ebaid H, Abdel-Salam B, Hassan I, Al-Tamimi J, Metwalli A, Alhazza I (2015) Camel milk peptide improves wound healing in diabetic rats by orchestrating the redox status and immune response. Lipids Health Dis 14:132. https://doi.org/10.1186/s12944-015-0136-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nongonierma AB, Cadamuro C, Le Gouic A, Mudgil P, Maqsood S, FitzGerald RJ (2019) Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chem 279:70–79. https://doi.org/10.1016/j.foodchem.2018.11.142

    Article  CAS  PubMed  Google Scholar 

  14. Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA (1922) Pancreatic extracts in the treatment of diabetes mellitus. Can Med Assoc J 12:141–146

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26(10):2700–2707. https://doi.org/10.1016/j.bmc.2017.06.052

    Article  CAS  Google Scholar 

  16. Zhang LN, Boeren S, Smits M, van Hooijdonk T, Vervoort J, Hettinga K (2016) Proteomic study on the stability of proteins in bovine, camel, and caprine milk sera after processing. Food Res Int 82:104–111. https://doi.org/10.1016/j.foodres.2016.01.023

    Article  CAS  Google Scholar 

  17. Yang Y, Zheng N, Wang W, Zhao X, Zhang Y, Han R, Ma L, Zhao S, Li S, Guo T, Zang C, Wang J (2016) N-glycosylation proteomic characterization and cross-species comparison of milk fat globule membrane proteins from mammals. Proteomics 16(21):2792–2800. https://doi.org/10.1002/pmic.201500361

    Article  CAS  PubMed  Google Scholar 

  18. Hinz K, O’Connor PM, Huppertz T, Ross RP, Kelly AL (2012) Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk. J Dairy Res 79(2):185–191. https://doi.org/10.1017/s0022029912000015

    Article  CAS  PubMed  Google Scholar 

  19. Ryskaliyeva A, Henry C, Miranda G, Faye B, Konuspayeva G, Martin P (2018) Combining different proteomic approaches to resolve complexity of the milk protein fraction of dromedary, Bactrian camels and hybrids, from different regions of Kazakhstan. PLoS One 13(5):e0197026. https://doi.org/10.1371/journal.pone.0197026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dingess KA, de Waard M, Boeren S, Vervoort J, Lambers TT, van Goudoever JB, Hettinga K (2017) Human milk peptides differentiate between the preterm and term infant and across varying lactational stages. Food Funct 8(10):3769–3782. https://doi.org/10.1039/c7fo00539c

    Article  CAS  PubMed  Google Scholar 

  21. Beverly RL, Underwood MA, Dallas DC (2019) Peptidomics analysis of milk protein-derived peptides released over time in the preterm infant stomach. J Proteome Res 18(3):912–922. https://doi.org/10.1021/acs.jproteome.8b00604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dallas D, Nielsen SD (2018) Milk peptidomics to identify functional peptides and for quality control of dairy products. Methods Mol Biol (Clifton, NJ) 1719:223–240. https://doi.org/10.1007/978-1-4939-7537-2_15

    Article  CAS  Google Scholar 

  23. Giacometti J, Buretić-Tomljanović A (2017) Peptidomics as a tool for characterizing bioactive milk peptides. Food Chem 230:91–98. https://doi.org/10.1016/j.foodchem.2017.03.016

    Article  CAS  PubMed  Google Scholar 

  24. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121. https://doi.org/10.1073/pnas.091062498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mooney C, Haslam NJ, Pollastri G, Shields DC (2012) Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS One 7(10):e45012. https://doi.org/10.1371/journal.pone.0045012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Minkiewicz P, Iwaniak A, Darewicz M (2019) BIOPEP-UWM database of bioactive peptides: current opportunities. Int J Mol Sci. https://doi.org/10.3390/ijms20235978

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dallas DC, Guerrero A, Khaldi N, Borghese R, Bhandari A, Underwood MA, Lebrilla CB, German JB, Barile D (2014) A peptidomic analysis of human milk digestion in the infant stomach reveals protein-specific degradation patterns. J Nutr 144(6):815–820. https://doi.org/10.3945/jn.113.185793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ismail B, Nielsen SS (2010) Invited review: plasmin protease in milk: current knowledge and relevance to dairy industry. J Dairy Sci 93(11):4999–5009. https://doi.org/10.3168/jds.2010-3122

    Article  CAS  PubMed  Google Scholar 

  29. Caessens PW, Visser S, Gruppen H, Voragen AG (1999) beta-lactoglobulin hydrolysis. 1. Peptide composition and functional properties of hydrolysates obtained by the action of plasmin, trypsin, and Staphylococcus aureus V8 protease. J Agric Food Chem 47(8):2973–2979. https://doi.org/10.1021/jf981229p

    Article  CAS  PubMed  Google Scholar 

  30. Grufferty MB, Fox PF (1988) Milk alkaline proteinase. J Dairy Res 55(4):609–630. https://doi.org/10.1017/s0022029900033409

    Article  CAS  PubMed  Google Scholar 

  31. Kussendrager KD, van Hooijdonk AC (2000) Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. Br J Nutr 84(Suppl 1):S19-25. https://doi.org/10.1017/s0007114500002208

    Article  CAS  PubMed  Google Scholar 

  32. Zou Z, Bauland J, Hewavitharana AK, Al-Shehri SS, Duley JA, Cowley DM, Koorts P, Shaw PN, Bansal N (2021) A sensitive, high-throughput fluorescent method for the determination of lactoperoxidase activities in milk and comparison in human, bovine, goat and camel milk. Food Chem 339:128090. https://doi.org/10.1016/j.foodchem.2020.128090

    Article  CAS  PubMed  Google Scholar 

  33. Icer MA, Gezmen-Karadag M (2018) The multiple functions and mechanisms of osteopontin. Clin Biochem 59:17–24. https://doi.org/10.1016/j.clinbiochem.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  34. Nomiyama T, Perez-Tilve D, Ogawa D, Gizard F, Zhao Y, Heywood EB, Jones KL, Kawamori R, Cassis LA, Tschöp MH, Bruemmer D (2007) Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Investig 117(10):2877–2888. https://doi.org/10.1172/jci31986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jayakumar A, Tai MH, Huang WY, Al-Feel W, Hsu M, Abu-Elheiga L, Chirala SS, Wakil SJ (1995) Human fatty acid synthase: properties and molecular cloning. Proc Natl Acad Sci U S A 92(19):8695–8699. https://doi.org/10.1073/pnas.92.19.8695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suburu J, Shi L, Wu J, Wang S, Samuel M, Thomas MJ, Kock ND, Yang G, Kridel S, Chen YQ (2014) Fatty acid synthase is required for mammary gland development and milk production during lactation. Am J Physiol Endocrinol Metab 306(10):E1132-1143. https://doi.org/10.1152/ajpendo.00514.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Müller TD, Finan B, Bloom SR, D’Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30:72–130. https://doi.org/10.1016/j.molmet.2019.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Musoev A, Numonov S, You Z, Gao H (2019) Discovery of novel DPP-IV inhibitors as potential candidates for the treatment of type 2 diabetes mellitus predicted by 3D QSAR pharmacophore models, molecular docking and de novo evolution. Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules24162870

    Article  Google Scholar 

  39. Bischoff H (1995) The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin Investig Med 18(4):303–311

    CAS  Google Scholar 

  40. Hedrington MS, Davis SN (2019) Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin Pharmacother 20(18):2229–2235. https://doi.org/10.1080/14656566.2019.1672660

    Article  PubMed  Google Scholar 

  41. Singh AK, Jatwa R, Purohit A, Ram H (2017) Synthetic and phytocompounds based dipeptidyl peptidase-IV (DPP-IV) inhibitors for therapeutics of diabetes. J Asian Nat Prod Res 19(10):1036–1045. https://doi.org/10.1080/10286020.2017.1307183

    Article  CAS  PubMed  Google Scholar 

  42. Uchida M, Ohshiba Y, Mogami O (2011) Novel dipeptidyl peptidase-4-inhibiting peptide derived from β-lactoglobulin. J Pharmacol Sci 117(1):63–66. https://doi.org/10.1254/jphs.11089sc

    Article  CAS  PubMed  Google Scholar 

  43. Nongonierma AB, FitzGerald RJ (2013) Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides 39:157–163. https://doi.org/10.1016/j.peptides.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  44. Kehinde BA, Sharma P (2020) Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review. Crit Rev Food Sci Nutr 60(2):322–340. https://doi.org/10.1080/10408398.2018.1528206

    Article  CAS  PubMed  Google Scholar 

  45. Lin L, Lv S, Li B (2012) Angiotensin-I-converting enzyme (ACE) inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chem 131:2225–2230

    Google Scholar 

  46. Rai AK, Sanjukta S, Jeyaram K (2017) Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Crit Rev Food Sci Nutr 57(13):2789–2800. https://doi.org/10.1080/10408398.2015.1068736

    Article  CAS  PubMed  Google Scholar 

  47. Quirós A, del Mar CM, Ramos M, Amigo L, Recio I (2009) Stability to gastrointestinal enzymes and structure-activity relationship of beta-casein-peptides with antihypertensive properties. Peptides 30(10):1848–1853. https://doi.org/10.1016/j.peptides.2009.06.031

    Article  CAS  PubMed  Google Scholar 

  48. Quirós A, Hernández-Ledesma B, Ramos M, Amigo L, Recio I (2005) Angiotensin-converting enzyme inhibitory activity of peptides derived from caprine kefir. J Dairy Sci 88(10):3480–3487. https://doi.org/10.3168/jds.S0022-0302(05)73032-0

    Article  PubMed  Google Scholar 

  49. Ayyash M, Al-Nuaimi AK, Al-Mahadin S, Liu SQ (2018) In vitro investigation of anticancer and ACE-inhibiting activity, α-amylase and α-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: a comparative study with fermented bovine milk. Food Chem 239:588–597. https://doi.org/10.1016/j.foodchem.2017.06.149

    Article  CAS  PubMed  Google Scholar 

  50. Salami M, Moosavi-Movahedi AA, Moosavi-Movahedi F, Ehsani MR, Yousefi R, Farhadi M, Niasari-Naslaji A, Saboury AA, Chobert JM, Haertlé T (2011) Biological activity of camel milk casein following enzymatic digestion. J Dairy Res 78(4):471–478. https://doi.org/10.1017/s0022029911000628

    Article  CAS  PubMed  Google Scholar 

  51. Laudisio A, Giovannini S, Finamore P, Gemma A, Bernabei R, Incalzi RA, Zuccalà G (2018) Use of ACE-inhibitors and quality of life in an older population. J Nutr Health Aging 22(10):1162–1166. https://doi.org/10.1007/s12603-018-1135-0

    Article  CAS  PubMed  Google Scholar 

  52. Maritim AC, Sanders RA, Watkins JB 3rd (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38. https://doi.org/10.1002/jbt.10058

    Article  CAS  PubMed  Google Scholar 

  53. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet (London, England) 344(8924):721–724. https://doi.org/10.1016/s0140-6736(94)92211-x

    Article  CAS  Google Scholar 

  54. Sah BNP, Vasiljevic T, McKechnie S, Donkor ON (2018) Antioxidative and antibacterial peptides derived from bovine milk proteins. Crit Rev Food Sci Nutr 58(5):726–740. https://doi.org/10.1080/10408398.2016.1217825

    Article  CAS  PubMed  Google Scholar 

  55. Ibrahim HR, Isono H, Miyata T (2018) Potential antioxidant bioactive peptides from camel milk proteins. Anim Nutr (Zhongguo xu mu shou yi xue hui) 4(3):273–280. https://doi.org/10.1016/j.aninu.2018.05.004

    Article  Google Scholar 

  56. Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31(10):1949–1956. https://doi.org/10.1016/j.peptides.2010.06.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31801463), Natural Science Foundation of Jiangsu Province (BK20180612), Innovation and Exploration Project of State Key Laboratory of Food Science and Technology (SKLF-ZZA-202104).

Author information

Authors and Affiliations

Authors

Contributions

LZ: Conceptualization, formal analysis, investigation, methodology, writing—original draft, funding acquisition. BH: Data curation, methodology. BL, YN, NB: Sample collection, review & editing. PZ: Supervision, writing—review & editing.

Corresponding author

Correspondence to Peng Zhou.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethics statements

The study was in line with international guidelines for the management of animals in research protocols.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

217_2021_3952_MOESM1_ESM.tif

Figure S1 The functional distribution of potential bioactive peptides from both Dromedary and Bactrian camel milk (A) and The differences in functional distribution of potential bioactive peptides between Dromedary and Bactrian camel milk (B) (TIF 930 KB)

217_2021_3952_MOESM2_ESM.xlsx

Table S1 Identified parent proteins of Dromedary camel milk. Table S2 Identified parent proteins of Bactrian camel milk. Table S3 Identified peptides from Dromedary camel milk. Table S4 Identified peptides from Bactrian camel milk. Table S5 Quantified peptides from Dromedary camel milk. Table S6 Quantified peptides from Bactrian camel milk. Table S7 Significantly different proteins between Dromedary and Bactrian camel milk. Table S8 Potential bioactive score of significantly different peptides using peptide ranker. Table S9 The bioactivity of those potential bioactive peptides from both Dromedary and Bactrian camel using BioPEP (XLSX 1734 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Han, B., Luo, B. et al. Characterization of endogenous peptides from Dromedary and Bactrian camel milk. Eur Food Res Technol 248, 1149–1160 (2022). https://doi.org/10.1007/s00217-021-03952-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03952-2

Keywords

Navigation