Log in

Pipette-tip solid-phase extraction coupled with matrix-assisted laser desorption/ionization mass spectrometry enables rapid and high-throughput analysis of antidepressants in rat serum

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Therapeutic drug monitoring is essential for ensuring the efficacy and safety of medications. This study introduces a streamlined approach that combines pipette-tip solid-phase extraction (PT-SPE) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), facilitating rapid and high-throughput monitoring of drug concentrations. As a demonstration, this method was applied to the extraction and quantification of antidepressants in serum. Utilizing Zip-Tip C18, the method enabled the extraction of antidepressants from complex biological matrices in less than 2 min, with the subsequent MALDI-MS analysis yielding results in just 1 min. Optimal extraction recoveries were achieved using a sampling solution at pH 9.0 and a 10 μL ethanol desorption solution containing 0.1% phosphoric acid. For MALDI analysis, 2,5-dihydroxybenzoic acid was identified as the most effective matrix for producing the highest signal intensity. The quantification strategy exhibited robust linearities (R2 ≥ 0.997) and satisfactory limits of quantification, ranging from 0.05 to 0.5 μg/mL for a suite of antidepressants. The application for monitoring dynamic concentration changes of antidepressants in rat serum emphasized the method’s efficacy. This strategy offers the advantages of high throughput, minimal sample usage, environmental sustainability, and simplicity, providing ideas and a reference basis for the subsequent development of methods for therapeutic drug monitoring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodriguez M, Martin M, de la Vega-Correa L, Zapata C, Burokas A, Blasco G, Coll C, Escrichs A, Biarnes C, Moreno-Navarrete JM, Puig J, Garre-Olmo J, Ramos R, Pedraza S, Brugada R, Vilanova JC, Serena J, Gich J, Ramio-Torrenta L, Perez-Brocal V, Moya A, Pamplona R, Sol J, Jove M, Ricart W, Portero-Otin M, Deco G, Maldonado R, Fernandez-Real JM. Microbiota alterations in proline metabolism impact depression. Cell Metab. 2022;34(5):681-701 e10. https://doi.org/10.1016/j.cmet.2022.04.001.

    Article  PubMed  Google Scholar 

  2. Guzinski M, Lindner E, Pendley B, Chaum E. Electrochemical sensor for tricyclic antidepressants with low nanomolar detection limit: Quantitative Determination of Amitriptyline and Nortriptyline in blood. Talanta. 2022;239:123072. https://doi.org/10.1016/j.talanta.2021.123072.

    Article  PubMed  Google Scholar 

  3. Sarikaya M, Ulusoy HI, Morgul U, Ulusoy S, Tartaglia A, Yilmaz E, Soylak M, Locatelli M, Kabir A. Sensitive determination of Fluoxetine and Citalopram antidepressants in urine and wastewater samples by liquid chromatography coupled with photodiode array detector. J Chromatogr A. 2021;1648:462215. https://doi.org/10.1016/j.chroma.2021.462215.

    Article  PubMed  Google Scholar 

  4. Chen L, Zhang Y, Zhang Y-X, Wang W-L, Sun D-M, Li P-Y, Feng X-S, Tan Y. Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring. J Pharm Anal. 2023. https://doi.org/10.1016/j.jpha.2023.11.006.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen D, Zhang JX, Cui WQ, Zhang JW, Wu DQ, Yu XR, Luo YB, Jiang XY, Zhu FP, Hussain D, Xu X. A simultaneous extraction/derivatization strategy coupled with liquid chromatography-tandem mass spectrometry for the determination of free catecholamines in biological fluids. J Chromatogr A. 2021;1654:462474. https://doi.org/10.1016/j.chroma.2021.462474.

    Article  PubMed  Google Scholar 

  6. Xu XL, Wang B, Li WX, Wu JY, Yuan H, Xu X, Chen D. In-pipette-tip natural-feather-supported liquid microextraction for conveniently extracting hydrophobic compounds in aqueous samples: A proof-of-concept study. Microchem J. 2023;185:108274. https://doi.org/10.1016/j.microc.2022.108274.

    Article  Google Scholar 

  7. Montemurro M, De Zan MM, Robles JC. Optimized high performance liquid chromatography-ultraviolet detection method using core-shell particles for the therapeutic monitoring of methotrexate. J Pharm Anal. 2016;6(2):103–11. https://doi.org/10.1016/j.jpha.2015.12.001.

    Article  PubMed  Google Scholar 

  8. Nozawa H, Minakata K, Yamagishi I, Hasegawa K, Suzuki M, Gonmori K, Suzuki O, Watanabe K. Simultaneous determination of cyclic antidepressants and their related drugs and the estimation of new metabolites in human whole blood and urine by MALDI-QTOF-mass spectrometry. Forensic Toxicol. 2016;34(2):244–55. https://doi.org/10.1007/s11419-016-0313-1.

    Article  Google Scholar 

  9. Rana S, Uralets VP, Ross W. A new method for simultaneous determination of cyclic antidepressants and their metabolites in urine using enzymatic hydrolysis and fast GC-MS. J Anal Toxicol. 2008;32(5):355–63. https://doi.org/10.1093/jat/32.5.355.

    Article  PubMed  Google Scholar 

  10. Lopez-Rabunal A, Lendoiro E, Concheiro M, Lopez-Rivadulla M, Cruz A, de-Castro-Rios A. LC-MS-MS Method for the Determination of Antidepressants and Benzodiazepines in Meconium. J Anal Toxicol. 2020;44(6):580-588. https://doi.org/10.1093/jat/bkaa012.

  11. Thu NQ, Tien NTN, Yen NTH, Duong TH, Long NP, Nguyen HT. Push forward LC-MS-based therapeutic drug monitoring and pharmacometabolomics for anti-tuberculosis precision dosing and comprehensive clinical management. J Pharm Anal. 2024;14(1):16–38. https://doi.org/10.1016/j.jpha.2023.09.009.

    Article  PubMed  Google Scholar 

  12. Looby N, Roszkowska A, Yu M, Rios-Gomez G, Pipkin M, Bojko B, Cypel M, Pawliszyn J. In vivo solid phase microextraction for therapeutic monitoring and pharmacometabolomic fingerprinting of lung during in vivo lung perfusion of FOLFO. J Pharm Anal. 2023;13(10):1195–204. https://doi.org/10.1016/j.jpha.2023.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yuan HY, Yu SH, Chai GH, Liu JT, Zhou Q. An LC-MS/MS method for simultaneous analysis of the cystic fibrosis therapeutic drugs colistin, ivacaftor and ciprofloxacin. J Pharm Anal. 2021;11(6):732–8. https://doi.org/10.1016/j.jpha.2021.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Huang H, Ouyang D, Lin J, Chen Z, Cai Z, Lin Z. A reactive matrix for in situ chemical derivatisation and specific detection of cis-diol compounds by matrix-assisted laser desorption/ionisation mass spectrometry. Analyst. 2023;148(21):5402–6. https://doi.org/10.1039/d3an01400b.

    Article  PubMed  Google Scholar 

  15. Wang Y, Hummon AB. Quantification of Irinotecan in Single Spheroids Using Internal Standards by MALDI Mass Spectrometry Imaging. Anal Chem. 2023;95(24):9227–36. https://doi.org/10.1021/acs.analchem.3c00699.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tang W, Zhang Y, Li P, Li B. Evaluation of Intestinal Drug Absorption and Interaction Using Quadruple Single-Pass Intestinal Perfusion Coupled with Mass Spectrometry Imaging. Anal Chem. 2023;95(6):3218–27. https://doi.org/10.1021/acs.analchem.2c03767.

    Article  PubMed  Google Scholar 

  17. Guo S, Li K, Chen Y, Li B. Unraveling the drug distribution in brain enabled by MALDI MS imaging with laser-assisted chemical transfer. Acta Pharm Sin B. 2022;12(4):2120–6. https://doi.org/10.1016/j.apsb.2021.11.007.

    Article  PubMed  Google Scholar 

  18. Bielawski A, Zelek-Molik A, Rafa-Zablocka K, Kowalska M, Gruca P, Papp M, Nalepa I. Elevated Expression of HSP72 in the Prefrontal Cortex and Hippocampus of Rats Subjected to Chronic Mild Stress and Treated with Imipramine. Int J Mol Sci. 2023;25(1):243. https://doi.org/10.3390/ijms25010243.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barbosa-Mendez S, Leff P, Arias-Caballero A, Hernandez-Miramontes R, Heinze G, Salazar-Juarez A. Mirtazapine attenuates cocaine seeking in rats. J Psychiatr Res. 2017;92:38–46. https://doi.org/10.1016/j.jpsychires.2017.03.021.

    Article  PubMed  Google Scholar 

  20. Pahlavani H, Masoudi M, Khoshroo N, Kakhki S, Mahdi Rezavanimehr M, Ghari A, Beheshti F. Vitamin B(12) reversed anxiety and depression induced by adolescent nicotine withdrawal through alteration the inflammatory, oxidative and serotoninergic profiles in male rats. Biochem Pharmacol. 2023;217:115832. https://doi.org/10.1016/j.bcp.2023.115832.

    Article  PubMed  Google Scholar 

  21. Balizs G, Weise C, Rozycki C, Opialla T, Sawada S, Zagon J, Lampen A. Determination of osteocalcin in meat and bone meal of bovine and porcine origin using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry and high-resolution hybrid mass spectrometry. Anal Chim Acta. 2011;693(1–2):89–99. https://doi.org/10.1016/j.aca.2011.03.027.

    Article  PubMed  Google Scholar 

  22. Wu S, Yang K, Liang Z, Zhang L, Zhang Y. Urea free and more efficient sample preparation method for mass spectrometry based protein identification via combining the formic acid-assisted chemical cleavage and trypsin digestion. Talanta. 2011;86:429–35. https://doi.org/10.1016/j.talanta.2011.08.052.

    Article  PubMed  Google Scholar 

  23. Bu XM, Zhao WD, Zhang MY, Wu DQ, Wu JY, Xu X, Chen D. Matrix-assisted laser desorption/ionization high-resolution mass spectrometry for high-throughput analysis of androgenic steroid adulteration in traditional Chinese medicine based on d0/d5-Girard’s reagent P labeling. Talanta. 2023;253:124006. https://doi.org/10.1016/j.talanta.2022.124006.

    Article  Google Scholar 

  24. Chen D, Liu FL, Rong Y, Qi MH, Li YY, Shi XZ, **e Y, Xu X. Coupling in-syringe kapok fiber-supported liquid-phase microextraction with flow injection-mass spectrometry for rapid and green biofluid analysis: Determination of antidepressants as an example. J Pharm Biomed Anal. 2023;229:115380. https://doi.org/10.1016/j.jpba.2023.115380.

    Article  PubMed  Google Scholar 

  25. Choi H, Lee D, Kim Y, Nguyen HQ, Han S, Kim J. Effects of Matrices and Additives on Multiple Charge Formation of Proteins in MALDI-MS Analysis. J Am Soc Mass Spectrom. 2019;30(7):1174–8. https://doi.org/10.1007/s13361-019-02213-7.

    Article  PubMed  Google Scholar 

  26. Zhou Q, Fulop A, Hopf C. Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Anal Bioanal Chem. 2021;413(10):2599–617. https://doi.org/10.1007/s00216-020-03023-7.

    Article  PubMed  Google Scholar 

  27. Sirot EJ, Harenberg S, Vandel P, Lima CAM, Perrenoud P, Kemmerling K, Zullino DF, Hilleret H, Crettol S, Jonzier-Perey M, Golay KP, Brocard M, Eap CB, Baumann P. Multicenter Study on the Clinical Effectiveness, Pharmacokinetics, and Pharmacogenetics of Mirtazapine in Depression. J Clin Psychopharm. 2012;32(5):622–9. https://doi.org/10.1097/JCP.0b013e3182664d98.

    Article  Google Scholar 

  28. Chen FF, Jiang H, Xu J, Wang SH, Meng DR, Geng PW, Dai DP, Zhou Q, Zhou YF. In Vitro and In Vivo Rat Model Assessments of the Effects of Vonoprazan on the Pharmacokinetics of Venlafaxine. Drug Des Dev Ther. 2020;14:4815–24. https://doi.org/10.2147/Dddt.S276704.

    Article  Google Scholar 

  29. Wolker LHW, Veltri CA, Pearman K, Lozoya M, Norris JW. Pharmacokinetics of fluoxetine in horses following oral administration. J Vet Pharmacol Ther. 2022;45(1):63–8. https://doi.org/10.1111/jvp.13029.

    Article  Google Scholar 

  30. Plotka-Wasylka J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta. 2018;181:204–9. https://doi.org/10.1016/j.talanta.2018.01.013.

    Article  PubMed  Google Scholar 

  31. Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE-Analytical GREEnness Metric Approach and Software. Anal Chem. 2020;92(14):10076–82. https://doi.org/10.1021/acs.analchem.0c01887.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wojnowski W, Tobiszewski M, Pena-Pereira F, Psillakis E. AGREEprep – Analytical greenness metric for sample preparation. TrAC. 2022;149:116553. https://doi.org/10.1016/j.trac.2022.116553.

    Article  Google Scholar 

  33. Manousi N, Wojnowski W, Płotka-Wasylka J, Samanidou V. Blue applicability grade index (BAGI) and software: a new tool for the evaluation of method practicality. Green Chem. 2023;25(19):7598–604. https://doi.org/10.1039/d3gc02347h.

    Article  Google Scholar 

  34. Gonzalez-Martin R, Gutierrez-Serpa A, Pino V, Sajid M. A tool to assess analytical sample preparation procedures: Sample preparation metric of sustainability. J Chromatogr A. 2023;1707:464291. https://doi.org/10.1016/j.chroma.2023.464291.

    Article  PubMed  Google Scholar 

  35. Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC. 2012;37:61–72. https://doi.org/10.1016/j.trac.2012.03.013.

    Article  Google Scholar 

  36. Han WC, Zhang HJ, Chen JB, Chen YY, Wang WJ, Liu YW, Yang P, Yuan DD, Chen D. A green and rapid deep eutectic solvent dispersed liquid-liquid microextraction with magnetic particles-assisted retrieval method: Proof-of-concept for the determination of antidepressants in biofluids. J Mol Liq. 2024;395:123875. https://doi.org/10.1016/j.molliq.2023.123875.

    Article  Google Scholar 

  37. Locatelli M, Covone S, Rosato E, Bonelli M, Savini F, Furton KG, Gazioglu I, D’Ovidio C, Kabir A, Tartaglia A. Analysis of seven selected antidepressant drugs in post-mortem samples using fabric phase sorptive extraction followed by high performance liquid chromatography-photodiode array detection. Forensic Chem. 2022;31:100460. https://doi.org/10.1016/j.forc.2022.100460.

    Article  Google Scholar 

  38. Lioupi A, Kabir A, Furton KG, Samanidou V. Fabric phase sorptive extraction for the isolation of five common antidepressants from human urine prior to HPLC-DAD analysis. J Chromatogr B. 2019;1118–1119:171–9. https://doi.org/10.1016/j.jchromb.2019.04.045.

    Article  Google Scholar 

  39. Azadkish K, Shokrollahi A, Rezayat MR, Rastgar M. Development of dispersive liquid-liquid microextraction with solid-phase evaporation as a novel hyphenated method prior to ion mobility spectrometry and its application for trace analysis of fluoxetine. Anal Bioanal Chem. 2023;415(14):2665–76. https://doi.org/10.1007/s00216-023-04665-z.

    Article  PubMed  Google Scholar 

  40. Oliveira AF, de Figueiredo EC, Dos Santos-Neto AJ. Analysis of fluoxetine and norfluoxetine in human plasma by liquid-phase microextraction and injection port derivatization GC-MS. J Pharm Biomed Anal. 2013;73:53–8. https://doi.org/10.1016/j.jpba.2012.04.006.

    Article  PubMed  Google Scholar 

  41. Ma W, Gao X, Guo H, Chen W. Determination of 13 antidepressants in blood by UPLC-MS/MS with supported liquid extraction pretreatment. J Chromatogr B. 2021;1171:122608. https://doi.org/10.1016/j.jchromb.2021.122608.

    Article  Google Scholar 

  42. H.D. de Faria, A.T. Silveira, B.C. do Prado, J.L.M. Nacif, M.A. Rosa, J.D.R. Dos Santos, P. Santos, E.C. Figueiredo, I. Martins. Online biological sample preparation with restricted access hybrid carbon nanotubes for determination of anti-smoking drugs. J Chromatogr A. 2022;1669:462931. https://doi.org/10.1016/j.chroma.2022.462931.

Download references

Funding

This work was supported by grants from the National Key R&D Program of China (2021YFC2401105), the National Natural Science Foundation of China (No. 82374018, No. 82003921), the China Postdoctoral Science Foundation (2021M702937, 2023M733256), and the Henan Provincial Science and Technology Research Project (242102311184).

Author information

Authors and Affiliations

Authors

Contributions

Zhi Sun: writing—original draft. Fangfang Wang: writing—original draft, methodology. Wenxuan Li: methodology. Ruobing Ren: methodology. Peipei Zhou: methodology. Qingquan Jia: methodology. Lingguo Zhao: methodology. Di Chen: conceptualization, writing—review and editing. Lihua Zuo: writing—review and editing.

Corresponding authors

Correspondence to Di Chen or Lihua Zuo.

Ethics declarations

Ethics approval

The collection and utilization of blood samples were carried out in strict adherence to ethical guidelines for the care and use of laboratory animals. The study was approved by the Ethics Committee of Zhengzhou University and executed in collaboration with the First Affiliated Hospital of Zhengzhou University.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 478 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Wang, F., Li, W. et al. Pipette-tip solid-phase extraction coupled with matrix-assisted laser desorption/ionization mass spectrometry enables rapid and high-throughput analysis of antidepressants in rat serum. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05439-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05439-x

Keywords

Navigation