Log in

A novel fluorescent biosensor based on affinity-enhanced aptamer-peptide conjugate for sensitive detection of lead(II) in aquatic products

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lead contamination is a major concern in food safety and, as such, many lead detection methods have been developed, especially aptamer-based biosensors. However, the sensitivity and environmental tolerance of these sensors require improvement. A combination of different types of recognition elements is an effective way to improve the detection sensitivity and environmental tolerance of biosensors. Here, we provide a novel recognition element, an aptamer-peptide conjugate (APC), to achieve enhanced affinity of Pb2+. The APC was synthesized from Pb2+ aptamers and peptides through clicking chemistry. The binding performance and environmental tolerance of APC with Pb2+ was studied through isothermal titration calorimetry (ITC); the binding constant (Ka) was 1.76*106 M−1, indicating that the APC’s affinity was increased by 62.96% and 802.56% compared with the aptamers and peptides, respectively. Besides, APC demonstrated better anti-interference (K+) than aptamer and peptide. Through the molecular dynamics (MD) simulation, we found that more binding sites and stronger binding energy between APC with Pb2+are the reasons for higher affinity between APC with Pb2+. Finally, a carboxyfluorescein (FAM)-labeled APC fluorescent probe was synthesized and a fluorescent detection method for Pb2+ was established. The limit of detection of the FAM-APC probe was calculated to be 12.45 nM. This detection method was also applied to the swimming crab and showed great potential in real food matrix detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sridhar A, Kannan D, Kapoor A, Prabhakar S. Extraction and detection methods of microplastics in food and marine systems: a critical review. Chemosphere 2022;286(Pt 1):131653. https://doi.org/10.1016/j.chemosphere.2021.131653.

  2. Zhang Y, Wu C, Liu H, Khan MR, Zhao Z, He G, Luo A, Zhang J, Deng R, He Q. Label-free DNAzyme assays for dually amplified and one-pot detection of lead pollution. J Hazard Mater. 2021;406:124790. https://doi.org/10.1016/j.jhazmat.2020.124790.

  3. Wu Y, Shi Y, Deng S, Wu C, Deng R, He G, Zhou M, Zhong K, Gao H. Metal-induced G-quadruplex polymorphism for ratiometric and label-free detection of lead pollution in tea. Food Chem. 2021;343:128425. https://doi.org/10.1016/j.foodchem.2020.128425.

  4. Malavolti M, Fairweather-Tait SJ, Malagoli C, Vescovi L, Vinceti M, Filippini T. Lead exposure in an Italian population: food content, dietary intake and risk assessment. Food Res Int. 2020;137:109370. https://doi.org/10.1016/j.foodres.2020.109370.

  5. Handley MA, Nelson K, Sanford E, Clarity C, Emmons-Bell S, Gorukanti A, Kennelly P. Examining lead exposures in California through state-issued health alerts for food contamination and an exposure-based candy testing program. Environ Health Perspect. 2017;125(10):104503. https://doi.org/10.1289/EHP2582.

  6. Chen X, Wang X, Lu Z, Luo H, Dong L, Ji Z, Xu F, Huo D, Hou C. Ultra-sensitive detection of Pb2+ based on DNAzymes coupling with multi-cycle strand displacement amplification (M-SDA) and nano-graphene oxide. Sensor Actuator B Chem. 2020;311:127898. https://doi.org/10.1016/j.snb.2020.127898.

  7. Xu M, Wang X, Liu X. Detection of heavy metal ions by ratiometric photoelectric sensor. J Agric Food Chem. 2022;70(37):11468–80. https://doi.org/10.1021/acs.jafc.2c03916.

    Article  CAS  PubMed  Google Scholar 

  8. Xu Y, Kutsanedzie FYH, Ali S, Wang P, Li C, Ouyang Q, Li H, Chen Q. Cysteamine-mediated upconversion sensor for lead ion detection in food. J Food Meas Charact. 2021;15(6):4849–57. https://doi.org/10.1007/s11694-021-01054-x.

    Article  Google Scholar 

  9. Martinello M, Dainese N, Manzinello C, Borin A, Gallina A, Mutinelli F. Retrospective evaluation of lead contamination in honey from 2005 to present in northeastern Italy and future perspectives in the light of updated legislation. Food Addit Contam B. 2016;9(3):198–202. https://doi.org/10.1080/19393210.2016.1170070.

    Article  CAS  Google Scholar 

  10. Zhang X, Wang Z, Liu L, Zhan N, Qin J, Lu X, Cheng M. Assessment of the risks from dietary lead exposure in China. J Hazard Mater. 2021;418:126134. https://doi.org/10.1016/j.jhazmat.2021.126134.

  11. Ferreira S, Bezerra M, Santos A, Santos L, Novaes C, Oliveir O, Oliveira M, Garcia L. Atomic absorption spectrometry e A multi element technique. TrAC Trends Anal Chem. 2018;(100):6. https://doi.org/10.1016/j.trac.2017.12.012.

  12. Bogaerts A, Aghaei M. Inductively coupled plasma-mass spectrometry: insights through computer modeling. J Anal At Spectrom. 2017;32(2):233–61. https://doi.org/10.1039/C6JA00408C.

    Article  CAS  Google Scholar 

  13. Chalyavi N, Doidge PS, Morrison RJS, Partridge GB. Fundamental studies of an atmospheric-pressure microwave plasma sustained in nitrogen for atomic emission spectrometry. J Anal At Spectrom. 2017;32(10):1988–2002. https://doi.org/10.1039/c7ja00159b.

    Article  CAS  Google Scholar 

  14. Sivakumar R, Lee NY. Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. Chemosphere 2021;275:130096. https://doi.org/10.1016/j.chemosphere.2021.130096.

  15. Khoshbin Z, Housaindokht MR, Izadyar M, Verdian A, Bozorgmehr MR. A simple paper-based aptasensor for ultrasensitive detection of lead (II) ion. Anal Chim Acta. 2019;1071:70–7. https://doi.org/10.1016/j.aca.2019.04.049.

    Article  CAS  PubMed  Google Scholar 

  16. Wang D, Ge C, Lv K, Zou Q, Liu Q, Liu L, Yang Q, Bao S. A simple lateral flow biosensor for rapid detection of lead(ii) ions based on G-quadruplex structure-switching. Chem Commun (Camb). 2018;54(97):13718–21. https://doi.org/10.1039/c8cc06810k.

    Article  CAS  PubMed  Google Scholar 

  17. Ravindran N, Kumar S, Yashini M, Rajeshwari S, Mamathi A, Thirunavookarasu N, Sunil K. Recent advances in surface plasmon resonance (SPR) biosensors for food analysis: a review. Crit Rev Food Sci Nutr. 2021;63(8):1055–77. https://doi.org/10.1080/10408398.2021.1958745.

    Article  CAS  PubMed  Google Scholar 

  18. Ling S, Zhao Q, Iqbal MN, Dong M, Li X, Lin M, Wang R, Lei F, He C, Wang S. Development of immunoassay methods based on monoclonal antibody and its application in the determination of cadmium ion. J Hazard Mater. 2021; 411:124992. https://doi.org/10.1016/j.jhazmat.2020.124992.

  19. Zhang Y, Hu Y, Deng S, Yuan Z, Li C, Lu Y, He Q, Zhou M, Deng R. Engineering multivalence aptamer probes for amplified and label-free detection of antibiotics in aquatic products. J Agric Food Chem. 2020;68(8):2554–61. https://doi.org/10.1021/acs.jafc.0c00141.

    Article  CAS  PubMed  Google Scholar 

  20. Hu J, Zhou S, Zeng L, Chen Q, Duan H, Chen X, Li X, **ong Y. Hydrazide mediated oriented coupling of antibodies on quantum dot beads for enhancing detection performance of immunochromatographic assay. Talanta 2021; 223 (Pt 1):121723. https://doi.org/10.1016/j.talanta.2020.121723.

  21. Lotfi Zadeh Zhad HR, Lai RY. Application of calcium-binding motif of E-cadherin for electrochemical detection of Pb(II). Anal Chem. 2018;90(11):6519–25. https://doi.org/10.1021/acs.analchem.7b05458.

    Article  CAS  PubMed  Google Scholar 

  22. Yin N, Zhao R, Zhang J, Yang D, Guo Z, Liu R, Yao X. A lable-free SPR biosensor based on one peptide sequence with three recognition sites for O-GlcNAc transferase detection. Talanta 2021;222:121664. https://doi.org/10.1016/j.talanta.2020.121664.

  23. Elcin E, Öktem HA. Inorganic cadmium detection using a fluorescent whole-cell bacterial bioreporter. Anal Lett. 2020;53(17):2715–33. https://doi.org/10.1080/00032719.2020.1755867.

    Article  CAS  Google Scholar 

  24. Wang XY, Yang T, Wang SY, Du KD, Chen ML, Wang JH. M13 phage as network frame for the quantification of Pb(2+) based on the Pb(2+)-induced in-situ growth of gold nanoparticles. Anal Chim Acta. 2019;1073:72–8. https://doi.org/10.1016/j.aca.2019.04.065.

    Article  CAS  PubMed  Google Scholar 

  25. Li S, Ma X, Pang C, Tian H, Xu Z, Yang Y, Lv D, Ge H. Fluorometric aptasensor for cadmium(II) by using an aptamer-imprinted polymer as the recognition element. Microchim Acta. 2019;186(12):823. https://doi.org/10.1007/s00604-019-3886-7.

    Article  CAS  Google Scholar 

  26. Sahin S, Caglayan MO, Ustundag Z. A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020;220:121437. https://doi.org/10.1016/j.talanta.2020.121437.

  27. Wu Y, Yue Y, Deng S, He G, Gao H, Zhou M, Zhong K, Deng R. Ratiometric-enhanced G-quadruplex probes for amplified and mix-to-read detection of mercury pollution in aquatic products. J Agric Food Chem. 2020;68(43):12124–31. https://doi.org/10.1021/acs.jafc.0c05658.

    Article  CAS  PubMed  Google Scholar 

  28. Matsunaga K, Okuyama Y, Hirano R, Okabe S, Takahashi M, Satoh H. Development of a simple analytical method to determine arsenite using a DNA aptamer and gold nanoparticles. Chemosphere. 2019;224:538–43. https://doi.org/10.1016/j.chemosphere.2019.02.182.

    Article  CAS  PubMed  Google Scholar 

  29. Dolati S, Ramezani M, Abnous K, Taghdisi SM. Recent nucleic acid based biosensors for Pb2+ detection. Sensor Actuator B Chem. 2017;246:864–78. https://doi.org/10.1016/j.snb.2017.02.118.

    Article  CAS  Google Scholar 

  30. Chen Z, Liu C, Su X, Zhang W, Zou X. Signal on-off ratiometric electrochemical sensor based on semi-complementary aptamer couple for sensitive cadmium detection in mussel. Sensor Actuator B Chem. 2021; 346:130506. https://doi.org/10.1016/j.snb.2021.130506.

  31. Yu H, Zhao Q. Sensitive microscale thermophoresis assay using aptamer thermal switch. Anal Chem. 2022;94(48):16685–91. https://doi.org/10.1021/acs.analchem.2c0306832.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao Y, Yavari K, Liu J. Critical evaluation of aptamer binding for biosensor designs. TrAC, Trends Anal Chem. 2022; 146:116480. https://doi.org/10.1016/j.trac.2021.116480.

  33. Bashir A, Yang Q, Wang J, Hoyer S, Chou W, McLean C, Davis G, Gong Q, Armstrong Z, Jang J, Kang H, Pawlosky A, Scott A, Dahl GE, Berndl M, Dimon M, Ferguson BS. Machine learning guided aptamer refinement and discovery. Nat Commun. 2021;12(1):2366. https://doi.org/10.1038/s41467-021-22555-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amero P, Lokesh GLR, Chaudhari RR, Cardenas-Zuniga R, Schubert T, Attia YM, Montalvo-Gonzalez E, Elsayed AM, Ivan C, Wang Z, Cristini V, Franciscis V, Zhang S, Volk DE, Mitra R, Rodriguez-Aguayo C, Sood AK, Lopez-Berestein G. Conversion of RNA aptamer into modified DNA aptamers provides for prolonged stability and enhanced antitumor activity. J Am Chem Soc. 2021;143(20):7655–70. https://doi.org/10.1021/jacs.9b10460.

    Article  CAS  PubMed  Google Scholar 

  35. Wu Y, Zhan S, Wang L, Zhou P. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst. 2014;139(6):1550–61. https://doi.org/10.1039/c3an02117c.

    Article  CAS  PubMed  Google Scholar 

  36. Wang H, Cheng H, Wang J, Xu L, Chen H, Pei R. Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II). Talanta. 2016;154:498–503. https://doi.org/10.1016/j.talanta.2016.04.005.

    Article  CAS  PubMed  Google Scholar 

  37. Yu R, Fang Z, Meng W, Yan Z, Du L, Wang H, Liu Z. High specificity detection of Pb2+ ions by p-SCN-Bz-DTPA immunogen and p-NH2-Bn-DTPA coating antigen. Front Env Sci Eng. 2013;8(5):729–36. https://doi.org/10.1007/s11783-013-0611-3.

    Article  CAS  Google Scholar 

  38. Lee J-W, Choi H, Hwang U-K, Kang J-C, Kang YJ, Kim KI, Kim J-H. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: a review. Environ Toxicol Pharmacol. 2019;68:101–8. https://doi.org/10.1016/j.etap.2019.03.010.

    Article  CAS  PubMed  Google Scholar 

  39. Okuda N, Okayama A, Miura K, Yoshita K, Miyagawa N, Saitoh S, Nakagawa H, Sakata K, Chan Q, Elliott P, Ueshima H, Stamler J. Food sources of dietary potassium in the adult Japanese population: the International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). Nutrients. 2020;12(3):787. https://doi.org/10.3390/nu12030787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang W, ** Y, Zhao Y, Yue X, Zhang C. Single-labeled hairpin probe for highly specific and sensitive detection of lead(II) based on the fluorescence quenching of deoxyguanosine and G-quartet. Biosens Bioelectron. 2013;41:137–42. https://doi.org/10.1016/j.bios.2012.08.006.

    Article  CAS  PubMed  Google Scholar 

  41. Wang H, Wang DM, Huang CZ. Highly sensitive chemiluminescent detection of lead ion based on its displacement of potassium in G-quadruplex DNAzyme. Analyst. 2015;140(16):5742–7. https://doi.org/10.1039/c5an00884k.

    Article  CAS  PubMed  Google Scholar 

  42. Kimoto M, Nakamura M, Hirao I. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications. Nucleic Acids Res. 2016;44(15):7487–94. https://doi.org/10.1093/nar/gkw619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu C, Zhao Y, Yan M, Huang Y, Yan J, Bai W, Chen A. A sandwich dipstick assay for ATP detection based on split aptamer fragments. Anal Bioanal Chem. 2016;408(15):4151–8. https://doi.org/10.1007/s00216-016-9506-z.

    Article  CAS  PubMed  Google Scholar 

  44. Gao S, Zheng X, Jiao B, Wang L. Post-SELEX optimization of aptamers. Anal Bioanal Chem. 2016;408(17):4567–73. https://doi.org/10.1007/s00216-016-9556-2.

    Article  CAS  PubMed  Google Scholar 

  45. Chinnappan R, AlZabn R, Fataftah AK, Alhoshani A, Zourob M. Probing high-affinity aptamer binding region and development of aptasensor platform for the detection of cylindrospermopsin. Anal Bioanal Chem. 2020;412(19):4691–701. https://doi.org/10.1007/s00216-020-02723-4.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Z, Yang X, Lee NZ, Cao X. Multivalent aptamer approach: designs, strategies, and applications. Micromachines. 2022;13(3):436. https://doi.org/10.3390/mi13030436.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khoshbin Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Verdian A. Theoretical design and experimental study of new aptamers with the improved target-affinity: new insights into the Pb2+-specific aptamers as a case study. J Mol Liq. 2019; 289:111159. https://doi.org/10.1016/j.molliq.2019.111159.

  48. Sun H, Li X, Li Y, Fan L, Kraatz HB. A novel colorimetric potassium sensor based on the substitution of lead from G-quadruplex. Analyst. 2013;138(3):856–62. https://doi.org/10.1039/c2an36564b.

    Article  CAS  PubMed  Google Scholar 

  49. Ratajczak K, Lukasiak A, Grel H. Monitoring of dynamic ATP level changes by oligomycin-modulated ATP synthase inhibition in SW480 cancer cells using fluorescent “On-Off” switching DNA aptamer. Anal Bioanal Chem. 2019;411(26):6899–911. https://doi.org/10.1007/s00216-019-02061-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Malavolti M, Naska A, Fairweather-Tait SJ, Malagoli C, Vescovi L, Marchesi C, Vinceti M, Filippini T. Sodium and potassium content of foods consumed in an Italian population and the impact of adherence to a Mediterranean diet on their intake. Nutrients. 2021;13(8):2681. https://doi.org/10.3390/nu13082681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang C, Yang S, Li J, Du Y, Song L, Huang D, Chen J, Zhou Q, Yang Q, Tang Y. Intelligent sensors of lead based on a reconfigurable DNA-supramolecule logic platform. Anal Chem. 2018;90:10585–90. https://doi.org/10.1021/acs.analchem.8b02782.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (32272421) and National Natural Science Foundation of China (32072312). This work was partly supported by the Science and Technology Innovation Action Plan of Shanghai (20392001600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liling Hao or Fei Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1553 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, K., Liu, X., Yuan, H. et al. A novel fluorescent biosensor based on affinity-enhanced aptamer-peptide conjugate for sensitive detection of lead(II) in aquatic products. Anal Bioanal Chem 415, 3463–3474 (2023). https://doi.org/10.1007/s00216-023-04735-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04735-2

Keywords

Navigation