Log in

A label-free dual immunosensor for the simultaneous electrochemical determination of CA125 and HE4 biomarkers for the early diagnosis of ovarian cancer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The blood levels of cancer antigen 125 (CA125) and human epididymal secretory protein 4 (HE4) are measured in the diagnosis and progression monitoring of ovarian cancer (OC), and the Risk of Ovarian Malignancy Algorithm (ROMA) score% values are calculated for cancer risk assessment. For the first time, disposable dual screen-printed carbon electrodes modified with reduced graphene oxide, polythionine, and gold nanoparticles were used to fabricate label-free electrochemical dual CA125-HE4 immunosensors for the sensitive, fast, and practical simultaneous determination of CA125 and HE4. DPV and SWV methods were used to simultaneously determine antigens in two different linear ranges (1–100 pg mL−1 and 1–50 ng mL−1). High sensitivity, low LOD, and LOQ were obtained for two linear ranges with a correlation coefficient above 0.99. The application stability of the dual CA125-HE4 immunosensors was determined as 60 days, and the storage stability was determined as 16 weeks. The dual immunosensors exhibited high selectivity in eight different antigen mixtures. The reusability of the dual immunosensors has been tested up to 9 cycles. ROMA score% values for pre-menopausal and post-menopausal status were calculated using the concentration of CA125 and HE4 in the blood serum and assessing OC risk. The disposable dual immunosensors can be used in point-of-care tests for rapid and practical simultaneous determination of CA125 and HE4 with high selectivity, sensitivity, and repeatability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. World ovarian cancer coalition, ovarian cancer key stats. 2022. https://worldovariancancercoalition.org/about-ovarian-cancer/key-stats/. Accessed 15 December 2022.

  2. Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin Oncol Nurs. 2019;35(2):151–6. https://doi.org/10.1016/j.soncn.2019.02.001.

    Article  PubMed  Google Scholar 

  3. Roett MA, Evans P. Ovarian cancer: an overview. American Family Physician. 2009; 80(6):609–16. https://www.aafp.org/pubs/afp/issues/2009/0915/p609.html

  4. Yokoi A, Yoshioka Y, Hirakawa A, Yamamoto Y, Ishikawa M, Ikeda SI, Ochiya T. A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget. 2017;8(52):89811–89823. https://doi.org/10.18632/oncotarget.20688.

  5. Pakchin PS, Fathi M, Ghanbari H, Saber R, Omidi Y. A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens Bioelectron. 2020;153:112029. https://doi.org/10.1016/j.bios.2020.112029.

  6. Aydın EB, Aydın M, Sezgintürk MK. The development of an ultra-sensitive electrochemical immunosensor using a PPyr-NHS functionalized disposable ITO sheet for the detection of interleukin 6 in real human serums. New J Chem. 2020;44(33):14228–38. https://doi.org/10.1039/D0NJ03183F.

    Article  Google Scholar 

  7. Aydın EB, Aydın M, Sezgintürk MK. Highly selective and sensitive sandwich immunosensor platform modified with MUA-capped GNPs for detection of spike Receptor Binding Domain protein: a precious marker of COVID 19 infection. Sens Actuators B Chem. 2021;345:130355. https://doi.org/10.1016/j.snb.2021.130355.

  8. Escudero JM, Auge JM, Filella X, Torne A, Pahisa J, Molina R. Comparison of serum human epididymis protein 4 with cancer antigen 125 as a tumor marker in patients with malignant and nonmalignant diseases. Clin Chem. 2011;57(11):1534–44. https://doi.org/10.1373/clinchem.2010.157073.

    Article  CAS  PubMed  Google Scholar 

  9. Saldova R, Struwe WB, Wynne K, Elia G, Duffy MJ, Rudd PM. Exploring the glycosylation of serum CA125. Int J Mol Sci. 2013;14(8):15636–54. https://doi.org/10.3390/ijms140815636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Z, Luo Z, Zhao B, Zhang W, Zhang J, Li Z, Li L. Diagnosis and preoperative predictive value of serum HE4 concentrations for optimal debulking in epithelial ovarian cancer. Oncol Lett. 2013;6(1):28–34. https://doi.org/10.3892/ol.2013.1339.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Woolas RP, Xu FJ, Jacabs IJ, Yu YH, Daly L, Brechuck A, Soper JT, Clarke-pearson DL, Oram DH, Bast RC Jr. Elevation of multiple serum markers in patients with stage I ovarian cancer. JNCI. 1993;85(21):1748–51. https://doi.org/10.1093/jnci/85.21.1748.

    Article  CAS  PubMed  Google Scholar 

  12. Hellström I, Raycraft J, Hayden-Ledbetter M, Ledbetter JA, Schummer M, McIntosh M, Hellström KE. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res. 2003;63(13):3695–700.

    PubMed  Google Scholar 

  13. Havrilesky LJ, Whitehead CM, Rubatt JM, Cheek RL, Groelke J, He Q, Berchuck A. Evaluation of biomarker panels for early stage ovarian cancer detection and monitoring for disease recurrence. Gynecol Oncol. 2008;110(3):374–82. https://doi.org/10.1016/j.ygyno.2008.04.041.

    Article  CAS  PubMed  Google Scholar 

  14. Moore RG, Brown AK, Miller MC, Skates S, Allard WJ, Verch T, Bast RC Jr. The use of multiple novel tumor biomarkers for the detection of ovarian carcinoma in patients with a pelvic mass. Gynecol Oncol. 2008;108(2):402–8. https://doi.org/10.1016/j.ygyno.2007.10.017.

    Article  CAS  PubMed  Google Scholar 

  15. Huhtinen K, Suvitie P, Hiissa J, Junnila J, Huvila J, Kujari H, Perheentupa A. Serum HE4 concentration differentiates malignant ovarian tumours from ovarian endometriotic cysts. Br J Cancer. 2009;100(8):1315–9. https://doi.org/10.1038/sj.bjc.6605011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moore RG, McMeekin DS, Brown AK, DiSilvestro P, Miller MC, Allard WJ, Skates SJ. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol. 2009;112(1):40–6. https://doi.org/10.1016/j.ygyno.2008.08.031.

    Article  CAS  PubMed  Google Scholar 

  17. Moore RG, MacLaughlan S, Bast RC Jr. Current state of biomarker development for clinical application in epithelial ovarian cancer. Gynecol Oncol. 2010;116(2):240–5. https://doi.org/10.1016/j.ygyno.2009.09.041.

    Article  CAS  PubMed  Google Scholar 

  18. Terlikowska KM, Dobrzycka B, Witkowska AM, Mackowiak-Matejczyk B, Sledziewski TK, Kinalski M, Terlikowski SJ. Preoperative HE4, CA125 and ROMA in the differential diagnosis of benign and malignant adnexal masses. J Ovarian Res. 2016;9(1):1–7. https://doi.org/10.1186/s13048-016-0254-7.

    Article  Google Scholar 

  19. Van Gorp T.I.E.A.K.F.D, Cadron I, Despierre E, Daemen A, Leunen K, Amant F, Vergote I. HE4 and CA125 as a diagnostic test in ovarian cancer: prospective validation of the Risk of Ovarian Malignancy Algorithm. Br J Cancer. 2011;104(5):863–70. https://doi.org/10.1038/sj.bjc.6606092.

  20. Kalapotharakos G, Asciutto C, Henic E, Casslén B, Borgfeldt C. High preoperative blood levels of HE4 predicts poor prognosis in patients with ovarian cancer. J Ovarian Res. 2012;5(1):1–9. https://doi.org/10.1186/1757-2215-5-20.

    Article  CAS  Google Scholar 

  21. Wang Q, Wu Y, Zhang H, Yang K, Tong Y, Chen L, Guan S. Clinical value of serum HE4, CA125, CA72–4, and ROMA Index for diagnosis of ovarian cancer and prediction of postoperative recurrence. Clin Lab. 2019;65(4). https://doi.org/10.7754/clin.lab.2018.181030.

  22. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of care diagnostics: status and future. Anal Chem. 2012;84(2):487–515. https://doi.org/10.1021/ac2030199.

    Article  CAS  PubMed  Google Scholar 

  23. Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron. 2006;21(10):1887–92. https://doi.org/10.1016/j.bios.2005.10.027.

    Article  CAS  PubMed  Google Scholar 

  24. Sun AC, Yao C, Venkatesh AG, Hall DA. An efficient power harvesting mobile phone-based electrochemical biosensor for point-of-care health monitoring. Sens Actuators B Chem. 2016;235:126–35. https://doi.org/10.1016/j.snb.2016.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Altun M, Bilgi Kamaç M, Bilgi A, Yılmaz M. Dopamine biosensor based on screen-printed electrode modified with reduced graphene oxide, polyneutral red and gold nanoparticle. Int J Environ Anal Chem. 2020;100(4):451–67. https://doi.org/10.1080/03067319.2020.1720669.

    Article  CAS  Google Scholar 

  26. Bilgi Kamaç M, Kıymaz Onat E, Yılmaz M. A new disposable amperometric NADH sensor based on screen-printed electrode modified with reduced graphene oxide/polyneutral red/gold nanoparticle. Int J Environ Anal Chem. 2020;100(4):419–31. https://doi.org/10.1080/03067319.2019.1703965.

    Article  CAS  Google Scholar 

  27. Lai G, Yin C, Tan X, Zhang H, Yu A. Amplified inhibition of the electrochemical signal of graphene–thionine nanocomposites using silica nanoprobes for ultrasensitive electrochemical immunoassays. Anal Methods. 2014;6(7):2080–5. https://doi.org/10.1039/c4ay00020j.

    Article  CAS  Google Scholar 

  28. Sonuç Karaboğa MN, Sezgintürk MK. Cerebrospinal fluid levels of alpha-synuclein measured using a poly-glutamic acid-modified gold nanoparticle-doped disposable neurobiosensor system. Analyst. 2019;144:611–21. https://doi.org/10.1039/c8an01279b.

    Article  CAS  PubMed  Google Scholar 

  29. Sezgintürk MK. A new impedimetric biosensor utilizing vegf receptor-1 (flt-1): Early diagnosis of vascular endothelial growth factor in breast cancer. Biosens Bioelectron. 2011;26(10):4032–9. https://doi.org/10.1016/j.bios.2011.03.025.

    Article  CAS  PubMed  Google Scholar 

  30. Yagati AK, Pyun JC, Min J, Cho S. Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor. Bioelectrochemistry. 2016;107:37–44. https://doi.org/10.1016/j.bioelechem.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  31. Carneiro P, Loureiro J, Delerue-Matos C, Morais S, do Carmo Pereira S M. Alzheimer’s disease: development of a sensitive label-free electrochemical immunosensor for detection of amyloid beta peptide. Sens Actuators B Chem. 2017;239:157–65. https://doi.org/10.1016/j.snb.2016.07.181.

  32. Demirbakan B, Sezgintürk MK. An impedimetric biosensor system based on disposable graphite paper electrodes: detection of ST2 as a potential biomarker for cardiovascular disease in human serum. Anal Chim Acta. 2021;1144:43–52. https://doi.org/10.1016/j.aca.2020.12.001.

    Article  CAS  PubMed  Google Scholar 

  33. Jozghorbani M, Fathi M, Kazemi S H, Alinejadian N. Determination of carcinoembryonic antigen as a tumor marker using a novel graphene-based label-free electrochemical immunosensor. Anal Biochem. 2021;613:114017. https://doi.org/10.1016/j.ab.2020.114017.

  34. Aydın EB, Sezgintürk MK. A sensitive and disposable electrochemical immünosensor for detection of SOX2, a biomarker of cancer. Talanta. 2017;172:162–70. https://doi.org/10.1016/j.talanta.2017.05.048.

    Article  CAS  PubMed  Google Scholar 

  35. Demirbakan B, Sezgintürk MK. A novel ultrasensitive immünosensor based on disposable graphite paper electrodes for troponin T detection in cardiovascular disease. Talanta. 2020;213:120779. https://doi.org/10.1016/j.talanta.2020.120779.

  36. de Castro ACH, Alves LM, Siquieroli ACS, Madurro JM, Brito-Madurro AG. Label-free electrochemical immunosensor for detection of oncomarker CA125 in serum. Microchem J. 2020;155:104746. https://doi.org/10.1016/j.microc.2020.104746.

  37. Sangili A, Kalyani T, Chen SM, Nanda A, Jana SK. Label-free electrochemical immunosensor based on one-step electrochemical deposition of AuNP-RGO nanocomposites for detection of endometriosis marker CA 125. ACS Appl Bio Mater. 2020;3(11):7620–30. https://doi.org/10.1021/acsabm.0c00821.

    Article  CAS  PubMed  Google Scholar 

  38. Biswas S, Lan Q, **e Y, Sun X, Wang Y. Label-free electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 125 based on antibody-immobilized biocompatible MOF-808/CNT. ACS Appl Mater Interfaces. 2021;13(2):3295–302. https://doi.org/10.1021/acsami.0c14946.

    Article  CAS  PubMed  Google Scholar 

  39. Öndeş B, Evli S, Uygun M, Uygun DA. Boron nitride nanosheet modified label-free electrochemical immunosensor for cancer antigen 125 detection. Biosens and Bioelectron 2021;191:113454. https://doi.org/10.1016/j.bios.2021.113454.

  40. Chen Z, Li B, Liu J, Li H, Li C, Xuan X, Li M. A label-free electrochemical immunosensor based on a gold–vertical graphene/TiO2 nanotube electrode for CA125 detection in oxidation/reduction dual channels. Mikrochim Acta. 2022;189(7):1–13. https://doi.org/10.1007/s00604-022-05332-3.

    Article  CAS  Google Scholar 

  41. Ni Y, Ouyang H, Yu L, Ling C, Zhu Z, He A, Liu R. Label-free electrochemical aptasensor based on magnetic α-Fe2O3/Fe3O4 heterogeneous hollow nanorods for the detection of cancer antigen 125. Bioelectrochemistry 2022;148:108255. https://doi.org/10.1016/j.bioelechem.2022.108255.

  42. Yan Q, Cao L, Dong H, Tan Z, Hu Y, Liu Q, Dong Y. Label-free immunosensors based on a novel multi-amplification signal strategy of TiO2-NGO/Au@Pd hetero-nanostructures. Biosens Bioelectron. 2019;127:174–80. https://doi.org/10.1016/j.bios.2018.12.038.

    Article  CAS  PubMed  Google Scholar 

  43. Qiao Z, Zhang H, Zhou Y, Zheng J. C60 mediated ion pair interaction for label-free electrochemical immunosensing with nanoporous anodic alumina nanochannels. Anal Chem. 2019;91(8):5125–32. https://doi.org/10.1021/acs.analchem.8b05673.

    Article  CAS  PubMed  Google Scholar 

  44. Chen DN, Jiang LY, Zhang JX, Tang C, Wang AJ, Feng JJ. Electrochemical label-free immunoassay of HE4 using 3D PtNi nanocubes assemblies as biosensing interfaces. Microchim Acta. 2022;189(12):1–9. https://doi.org/10.1007/s00604-022-05553-6.

    Article  CAS  Google Scholar 

  45. Qu J, Yu F. Fabrication of a highly sensitive electrochemical immunosensor for human epididymis protein 4 (HE4) detection. Int J Electrochem Sci. 2018;13:11193–202. https://doi.org/10.20964/2018.11.73.

  46. Saarelainen SK, Peltonen N, Lehtimäki T, Perheentupa A, Vuento MH, Mäenpää JU. Predictive value of serum human epididymis protein 4 and cancer antigen 125 concentrations in endometrial carcinoma. Am J Obstet Gynecol. 2013;209(2):142-e1. https://doi.org/10.1016/j.ajog.2013.04.014.

    Article  CAS  Google Scholar 

  47. Huy NVQ, Van Khoa V, Vinh TQ, Tung NS, Thanh CN, Chuang L. Standard and optimal cut-off values of serum ca-125, HE4 and ROMA in preoperative prediction of ovarian cancer in Vietnam. Gynecol Oncol Rep. 2018;25:110–4. https://doi.org/10.1016/j.gore.2018.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moore RG, Jabre-Raughley M, Brown AK, Robison KM, Miller MC, Allard WJ, Skates SJ. Comparison of a novel multiple marker assay vs the Risk of Malignancy Index for the prediction of epithelial ovarian cancer in patients with a pelvic mass. Am J Obstet Gynecol. 2010;203(3):228-e1. https://doi.org/10.1016/j.ajog.2010.03.043.

    Article  PubMed Central  Google Scholar 

  49. Moore RG, Miller M, Disilvestro P, Landrum L, Gajewski W, Ball J, Skates S. Evaluation of the diagnostic accuracy of the risk of ovarian malignancy algorithm in women with a pelvic mass. Obstet Gynecol. 2011;118:280–8. https://doi.org/10.1097/AOG.0b013e318224fce2.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Scientific and Technological Research Institution of Turkey (TUBITAK), 1001- Scientific and Technological Research Projects Support Program (project number: 118R030).

Author information

Authors and Affiliations

Authors

Contributions

Melike Bilgi Kamaç: conceptualization, methodology, investigation, validation, formal analysis, data curation, supervision, writing—original draft, funding acquisition, resources, and project administration. Muhammed Altun: methodology, investigation, validation, visualization, formal analysis, and writing—original draft. Merve Yılmaz: methodology, investigation, validation, visualization, formal analysis, and writing—original draft. Mustafa Kemal Sezgintürk: conceptualization, methodology, and writing—review and editing.

Corresponding authors

Correspondence to Melike Bilgi Kamaç or Mustafa Kemal Sezgintürk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 232 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgi Kamaç, M., Altun, M., Yilmaz, M. et al. A label-free dual immunosensor for the simultaneous electrochemical determination of CA125 and HE4 biomarkers for the early diagnosis of ovarian cancer. Anal Bioanal Chem 415, 1709–1718 (2023). https://doi.org/10.1007/s00216-023-04569-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04569-y

Keywords

Navigation