Log in

Quantification of monodisperse and biocompatible gold nanoparticles by single-particle ICP-MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bioanalytical and biomedical applications often require nanoparticles that exhibit narrow size distributions and biocompatibility. Here, we demonstrate how different synthesis methods affect gold nanoparticle (AuNPs) monodispersity and cytotoxicity. Using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS), we found that the size distribution of AuNPs synthesized with a cetyltrimethylammonium chloride (CTAC) cap was significantly improved compared to AuNPs synthesized with citrate cap** agents. We determined an up to 4× decrease in the full width at half maximum (FWHM) value of the normal distributions of AuNP diameter and up to a 12% decrease in relative standard deviation (RSD). While the CTAC-capped AuNPs exhibit narrow nanoparticle size distributions, they are cytotoxic, which limits safe and effective bioanalytical and biomedical applications. We sought to impart biocompatibility to CTAC-capped AuNPs through a PEGylation-based surface ligand exchange. We developed a unique ligand exchange method driven by physical force. We demonstrated the successful PEGylation using various PEG derivatives and used these PEGylated nanoparticles to further bioconjugate nucleic acids and peptides. Using cell viability quantification, we confirmed that the monodisperse PEGylated AuNPs were biocompatible. Our monodisperse and biocompatible nanoparticles may advance safe and effective bioanalytical and biomedical applications of nanomaterials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Delivery Rev. 2019;143:68–96. https://doi.org/10.1016/j.addr.2019.04.008.

    Article  CAS  Google Scholar 

  2. Donahue ND, Sheth V, Frickenstein AN, Holden A, Kanapilly S, Stephan C, et al. Absolute quantification of nanoparticle interactions with individual human b cells by single cell mass spectrometry. Nano Lett. 2022;22(10):4192–9. https://doi.org/10.1021/acs.nanolett.2c01037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Villanueva-Flores F, Castro-Lugo A Fau - Ramírez OT, Ramírez Ot Fau - Palomares LA, Palomares LA. Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices. Nanotechnology. 2020;31(1361–6528). https://doi.org/10.1088/1361-6528/ab5bc8.

  4. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11 (6)(1748–6963). https://doi.org/10.2217/nnm.16.5.

  5. Thomas OS, Weber W. Overcoming physiological barriers to nanoparticle delivery—are we there yet? Front Bioeng Biotechnol. 2019;7:415. https://doi.org/10.3389/fbioe.2019.00415.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen K-H, Lundy D, Toh E-W, Chen C-H, Shih C, Chen P, et al. Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific. Nanoscale. 2015;7(38):15863–72. https://doi.org/10.1039/C5NR03626G.

    Article  CAS  PubMed  Google Scholar 

  7. Muzzio M, Li J, Yin Z, Delahunty IM, **e J, Sun S. Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale. 2019;11(41):18946–67. https://doi.org/10.1039/C9NR06080D.

    Article  CAS  PubMed  Google Scholar 

  8. Dheyab MA, Aziz AA, Moradi Khaniabadi P, Jameel MS, Oladzadabbasabadi N, Mohammed SA, et al. Monodisperse gold nanoparticles: a review on synthesis and their application in modern medicine. Int J Mol Sci. 2022;23(13):7400. https://doi.org/10.3390/ijms23137400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kus-Liśkiewicz MA-O, Fickers PA-O, Ben Tahar I. Biocompatibility and cytotoxicity of gold nanoparticles: recent advances in methodologies and regulations. Int J Mol Sci. 2021;22 (20)(1422–0067). https://doi.org/10.3390/ijms222010952.

  10. Yang W, Wang L, Fang M, Sheth V, Zhang Y, Holden AM, et al. Nanoparticle surface engineering with heparosan polysaccharide reduces serum protein adsorption and enhances cellular uptake. Nano Lett. 2022;22(5):2103–11. https://doi.org/10.1021/acs.nanolett.2c00349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang W, Frickenstein AN, Sheth V, Holden A, Mettenbrink EM, Wang L, et al. Controlling nanoparticle uptake in innate immune cells with heparosan polysaccharides. Nano Lett. 2022;22(17):7119–28. https://doi.org/10.1021/acs.nanolett.2c02226.

    Article  CAS  PubMed  Google Scholar 

  12. Wilhelm S, Bensen RC, Kothapalli NR, Burgett AWGM, R, Stephan C. Quantification of gold nanoparticle uptake into cancer cells using single cell ICP-MS. PerkinElmer Appl Note. 2018. https://resources.perkinelmer.com/lab-solutions/resources/docs/app_014276_01_nexion_sc-icp-ms_np_uptake_in_cancer_cells.pdf. Accessed 15 Nov 2022.

  13. Turnbull T, Thierry B, Kempson I. A quantitative study of intercellular heterogeneity in gold nanoparticle uptake across multiple cell lines. Anal Bioanal Chem. 2019;411(28):7529–38. https://doi.org/10.1007/s00216-019-02154-w.

    Article  CAS  PubMed  Google Scholar 

  14. Carabineiro SAC. Applications of gold nanoparticles in nanomedicine: recent advances in vaccines. Molecules. 2017;22 (5)(1420–3049). https://doi.org/10.3390/molecules22050857.

  15. Elumalai M, Ipatov A, Carvalho J, Guerreiro J, Prado M. Dual colorimetric strategy for specific DNA detection by nicking endonuclease-assisted gold nanoparticle signal amplification. Anal Bioanal Chem. 2022;414(18):5239–53. https://doi.org/10.1007/s00216-021-03564-5.

    Article  CAS  PubMed  Google Scholar 

  16. Sánchez-Visedo A, Ferrero FJ, Costa-Fernández JM, Fernández-Argüelles MT. Inorganic nanoparticles coupled to nucleic acid enzymes as analytical signal amplification tools. Anal Bioanal Chem. 2022;414(18):5201–15. https://doi.org/10.1007/s00216-022-03998-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Modena MM, Rühle B, Burg TP, Wuttke S. Nanoparticle characterization: what to measure? Adv Mater. 2019;31(32):1901556. https://doi.org/10.1002/adma.201901556.

    Article  CAS  Google Scholar 

  18. Hoo CM, Starostin N, West P, Mecartney ML. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res. 2008;10(1):89–96. https://doi.org/10.1007/s11051-008-9435-7.

    Article  CAS  Google Scholar 

  19. Dastanpour R, Boone JM, Rogak SN. Automated primary particle sizing of nanoparticle aggregates by TEM image analysis. Powder Technol. 2016;295:218–24. https://doi.org/10.1016/j.powtec.2016.03.027.

    Article  CAS  Google Scholar 

  20. Mozhayeva D, Engelhard C. A critical review of single particle inductively coupled plasma mass spectrometry – a step towards an ideal method for nanomaterial characterization. J Anal At Spectrom. 2020;35(9):1740–83. https://doi.org/10.1039/C9JA00206E.

    Article  CAS  Google Scholar 

  21. Montaño MD, Lowry GV, von der Kammer F, Blue J, Ranville JF. Current status and future direction for examining engineered nanoparticles in natural systems. Environ Chem. 2014;11(4):351–66. https://doi.org/10.1071/EN14037.

    Article  CAS  Google Scholar 

  22. Bocca B, Battistini B, Petrucci F. Silver and gold nanoparticles characterization by SP-ICP-MS and AF4-FFF-MALS-UV-ICP-MS in human samples used for biomonitoring. Talanta. 2020;220:121404. https://doi.org/10.1016/j.talanta.2020.121404.

  23. **ng Y, Han J, Wu X, Pierce DT, Zhao JX. Aggregation-based determination of mercury(II) using DNA-modified single gold nanoparticle, T-Hg(II)-T interaction, and single-particle ICP-MS. Microchim Acta. 2019;187(1):56. https://doi.org/10.1007/s00604-019-4057-6.

    Article  CAS  Google Scholar 

  24. Xu X, Chen J, Li B, Tang L, Jiang J. Single particle ICP-MS-based absolute and relative quantification of E. coli O157 16S rRNA using sandwich hybridization capture. Analyst. 2019;144(5):1725–30. https://doi.org/10.1039/C8AN02063A.

  25. Hu J, Deng D, Liu R, Lv Y. Single nanoparticle analysis by ICPMS: a potential tool for bioassay. J Anal At Spectrom. 2018;33(1):57–67. https://doi.org/10.1039/C7JA00235A.

    Article  CAS  Google Scholar 

  26. Donahue ND, Kanapilly S, Stephan C, Marlin MC, Francek ER, Haddad M, et al. Quantifying chemical composition and reaction kinetics of individual colloidally dispersed nanoparticles. Nano Lett. 2022;22(1):294–301. https://doi.org/10.1021/acs.nanolett.1c03752.

    Article  CAS  PubMed  Google Scholar 

  27. Donahue ND, Francek ER, Kiyotake E, Thomas EE, Yang W, Wang L, et al. Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Anal Bioanal Chem. 2020;412(22):5205–16. https://doi.org/10.1007/s00216-020-02783-6.

    Article  CAS  PubMed  Google Scholar 

  28. Perrault SD, Chan WCW. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc. 2009;131(47):17042–3. https://doi.org/10.1021/ja907069u.

    Article  CAS  PubMed  Google Scholar 

  29. Zheng Y, Zhong X, Li Z, **a Y. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm. Part Part Syst Charact. 2014;31(2):266–73. https://doi.org/10.1002/ppsc.201300256.

    Article  CAS  Google Scholar 

  30. Liu N, Zhang H, Zhao J, Xu Y, Ge F. Mechanisms of cetyltrimethyl ammonium chloride-induced toxicity to photosystem II oxygen evolution complex of Chlorella vulgaris F1068. J Hazard Mater. 2020;383:121063. https://doi.org/10.1016/j.jhazmat.2019.121063.

  31. Tang M, Zhang P, Liu J, Long Y, Cheng Y, Zheng H. Cetyltrimethylammonium chloride-loaded mesoporous silica nanoparticles as a mitochondrion-targeting agent for tumor therapy. RSC Adv. 2020;10(29):17050–7. https://doi.org/10.1039/D0RA02023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75. https://doi.org/10.1039/DF9511100055.

    Article  Google Scholar 

  33. Schulz F, Pavelka O, Lehmkühler F, Westermeier F, Okamura Y, Mueller NS, et al. Structural order in plasmonic superlattices. Nat Commun. 2020;11(1):3821. https://doi.org/10.1038/s41467-020-17632-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng Y, Ma Y, Zeng J, Zhong X, ** M, Li Z-Y, et al. Seed-mediated synthesis of single-crystal gold nanospheres with controlled diameters in the range 5–30 nm and their self-assembly upon dilution. Chem - Asian J. 2013;8(4):792–9. https://doi.org/10.1002/asia.201201105.

    Article  CAS  PubMed  Google Scholar 

  35. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem. 2011;83(24):9361–9. https://doi.org/10.1021/ac201952t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Gray EP, Higgins CP, et al. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ Sci Technol. 2012;46(22):12272–80. https://doi.org/10.1021/es301787d.

    Article  CAS  PubMed  Google Scholar 

  37. Laborda F, Bolea E, Jiménez-Lamana J. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem. 2014;86(5):2270–8. https://doi.org/10.1021/ac402980q.

    Article  CAS  PubMed  Google Scholar 

  38. Lee JC, Donahue ND, Mao AS, Karim A, Komarneni M, Thomas EE, et al. Exploring maleimide-based nanoparticle surface engineering to control cellular interactions. ACS Appl Nano Mater. 2020;3(3):2421–9. https://doi.org/10.1021/acsanm.9b02541.

    Article  CAS  Google Scholar 

  39. Li J, Zhu B, Zhu Z, Zhang Y, Yao X, Tu S, et al. Simple and rapid functionalization of gold nanorods with oligonucleotides using an mPEG-SH/Tween 20-assisted approach. Langmuir. 2015;31(28):7869–76. https://doi.org/10.1021/acs.langmuir.5b01680.

    Article  CAS  PubMed  Google Scholar 

  40. Slesiona N, Thamm S, Stolle HLKS, Weißenborn V, Müller P, Csáki A, et al. DNA-biofunctionalization of CTAC-capped gold nanocubes Nanomaterials. 2020;10(6):1119. https://doi.org/10.3390/nano10061119.

    Article  CAS  PubMed  Google Scholar 

  41. Lee C-Y, Nguyen P-CT, Grainger DW, Gamble LJ, Castner DG. Structure and DNA hybridization properties of mixed nucleic acid/maleimide−ethylene glycol monolayers. Anal Chem. 2007;79(12):4390–400. https://doi.org/10.1021/ac0703395.

  42. Chou LYT, Zagorovsky K, Chan WCW. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat Nanotechnol. 2014;9(2):148–55. https://doi.org/10.1038/nnano.2013.309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zagorovsky K, Chou LYT, Chan WCW. Controlling DNA–nanoparticle serum interactions. Proc Natl Acad Sci. 2016;113(48):13600–5. https://doi.org/10.1073/pnas.1610028113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maguire CA-O, Rösslein M, Wick P, Prina-Mello AA-O. Characterisation of particles in solution - a perspective on light scattering and comparative technologies. Sci Technol Adv Mater. 2018;19 (1)(1468–6996):732–45. https://doi.org/10.1080/14686996.2018.1517587.

  45. Khlebtsov NG. Determination of size and concentration of gold nanoparticles from extinction spectra. Anal Chem. 2008;80(17):6620–5. https://doi.org/10.1021/ac800834n.

    Article  CAS  PubMed  Google Scholar 

  46. Shafiqa AR, Abdul Aziz A, Mehrdel B. Nanoparticle optical properties: size dependence of a single gold spherical nanoparticle. J Phys: Conf Ser. 2018;1083(1):012040. https://doi.org/10.1088/1742-6596/1083/1/012040.

  47. Huang Y, Kim D-H. Synthesis and self-assembly of highly monodispersed quasispherical gold nanoparticles. Langmuir. 2011;27(22):13861–7. https://doi.org/10.1021/la203143k.

    Article  CAS  PubMed  Google Scholar 

  48. Lee S, Bi X, Reed RB, Ranville JF, Herckes P, Westerhoff P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol. 2014;48(17):10291–300. https://doi.org/10.1021/es502422v.

    Article  CAS  PubMed  Google Scholar 

  49. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Delivery Rev. 2016;99 (A)(1872–8294):28–51. https://doi.org/10.1016/j.addr.2015.09.012.

  50. Jokerst JV, Lobovkina T Fau - Zare RN, Zare Rn Fau - Gambhir SS, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6 (4)(1748–6963). https://doi.org/10.2217/nnm.11.19.

  51. Kokkin DL, Zhang R, Steimle TC, Wyse IA, Pearlman BW, Varberg TD. Au–S bonding revealed from the characterization of diatomic gold sulfide. AuS J Phys Chem A. 2015;119(48):11659–67. https://doi.org/10.1021/acs.jpca.5b08781.

    Article  CAS  PubMed  Google Scholar 

  52. Bürgi T. Properties of the gold–sulphur interface: from self-assembled monolayers to clusters. Nanoscale. 2015;7(38):15553–67. https://doi.org/10.1039/C5NR03497C.

    Article  CAS  PubMed  Google Scholar 

  53. Dai Q, Wilhelm S, Ding D, Syed AM, Sindhwani S, Zhang Y, et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano. 2018;12(8):8423–35. https://doi.org/10.1021/acsnano.8b03900.

    Article  CAS  PubMed  Google Scholar 

  54. Syed AM, Sindhwani S, Wilhelm S, Kingston BR, Lee DSW, Gommerman JL, et al. Three-dimensional imaging of transparent tissues via metal nanoparticle labeling. J Am Chem Soc. 2017;139(29):9961–71. https://doi.org/10.1021/jacs.7b04022.

    Article  CAS  PubMed  Google Scholar 

  55. Wang F, Chen B, Yan B, Yin Y, Hu L, Liang Y, et al. Scattered Light imaging enables real-time monitoring of label-free nanoparticles and fluorescent biomolecules in live cells. J Am Chem Soc. 2019;141(36):14043–7. https://doi.org/10.1021/jacs.9b05894.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of Dr. Steven Foster, Dr. Preston Larson, Dr. Julian Sabisch, and Dr. Ben Fowler. Additionally, the authors acknowledge the University of Oklahoma (OU) Samuel Roberts Noble Microscopy Laboratory (SRNML), the OU Mass Spectrometry, Proteomics & Metabolomics (MSPM) Core, and the Oklahoma Medical Research Foundation (OMRF) Imaging Core Facility for assistance. The authors would like to thank Sarah Butterfield, Majood Haddad, Luke Whitehead, Nathan Mjema, Abigail Thomas, and Sam Ferguson for their help synthesizing nanoparticles.

Funding

This work was supported in part by awards from NIH COBRE (P20GM135009), NSF CAREER (2048130), and OCAST (HR20-106) and by the University of Oklahoma Vice President for Research and Partnerships SRNML Voucher Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wilhelm.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1806 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frickenstein, A.N., Mukherjee, S., Harcourt, T. et al. Quantification of monodisperse and biocompatible gold nanoparticles by single-particle ICP-MS. Anal Bioanal Chem 415, 4353–4366 (2023). https://doi.org/10.1007/s00216-023-04540-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04540-x

Keywords

Navigation