Log in

Influence of host–guest interactions on analytical performance of direct analysis in real-time mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To systematically study the influence of host–guest interactions on the analytical performance of direct analysis in real time mass spectrometry (DART-MS), the interactions between cyclodextrins (CDs) and different Sudan dyes were investigated. The results showed that the host–guest interaction between CDs and Sudan dyes did not affect qualitative analysis of the target compounds, but led to a lower signal intensity for Sudan dyes, thus affecting quantitative analysis of the target compounds. The stronger the host–guest interaction, the weaker the signal intensity of target compound on DART-MS. The results also show that both in solution and in solid-phase microextraction (SPME), the addition of organic solvents can weaken the host–guest interaction between CDs and Sudan dyes, thus improving the signal intensity in DART-MS. In SPME, adding organic solvents has a certain practical value and can improve the efficiency of Sudan dye analysis. This study suggests that appropriate sample pretreatment is needed to weaken noncovalent interactions prior to DART-MS analysis to obtain more accurate quantitative results. The data provide some insight into the effects of other noncovalent interactions on the efficiency of DART-MS as an analytical tool, as well as the potential to study intermolecular interactions with DART-MS.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cooks RG, Ouyang Z, Takats Z, Wiseman JM. Ambient mass spectrometry. Science. 2006;311(5767):1566–70. https://doi.org/10.1126/science.1119426.

    Article  CAS  PubMed  Google Scholar 

  2. Harris GA, Galhena AS, Fernandez FM. Ambient sampling/ionization mass spectrometry: applications and current trends, analytical chemistry, 2011, 83 (12), 4508-4538. https://doi.org/10.1021/ac200918u

  3. Venter A, Nefliu M, Cooks RG. Ambient desorption ionization mass spectrometry. TrAC, Trends Anal Chem. 2008;27(4):284–90. https://doi.org/10.1016/j.trac.2008.01.010.

    Article  CAS  Google Scholar 

  4. Cody RB, Laramée J, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77(8):2297–302. https://doi.org/10.1021/ac050162j.

    Article  CAS  PubMed  Google Scholar 

  5. Gross JH. Direct analysis in real time—a critical review on DART-MS. Anal Bioanal Chem. 2014;406(1):63–80. https://doi.org/10.1007/s00216-013-7316-0.

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Wang X, Li L, Bai Y, Liu H. Direct analysis in real time mass spectrometry: a powerful tool for fast analysis. Mass Spectrometry Letters. 2015;6(1):1–6. https://doi.org/10.5478/MSL.2015.6.1.1.

    Article  Google Scholar 

  7. Wang J, Zhou Y, Wang M, Bi W, Li H, Chen DDY. High-throughput analysis for artemisinins with deep eutectic solvents mechanochemical extraction and direct analysis in real time mass spectrometry. Anal Chem. 2018;90(5):3109–17. https://doi.org/10.1021/acs.analchem.7b04060.

    Article  CAS  PubMed  Google Scholar 

  8. Li Y. Confined direct analysis in real time ion source and its applications in analysis of volatile organic compounds of Citrus limon (lemon) and Allium cepa (onion). Rapid Commun Mass Spectrom. 2012;26(10):1194–202. https://doi.org/10.1002/rcm.6217.

    Article  CAS  PubMed  Google Scholar 

  9. Jones CM, Fernández FM. Transmission mode direct analysis in real time mass spectrometry for fast untargeted metabolic fingerprinting. Rapid Commun Mass Spectrom. 2013;27(12):1311–8. https://doi.org/10.1002/rcm.6566.

    Article  CAS  PubMed  Google Scholar 

  10. Song Y, Liao J, Dong J, Chen L. Rapidly differentiating grape seeds from different sources based on characteristic fingerprints using direct analysis in real time coupled with time-of-flight mass spectrometry combined with chemometrics. J Sep Sci. 2015;38(17):3084–9. https://doi.org/10.1002/jssc.201500055.

    Article  CAS  PubMed  Google Scholar 

  11. Bridoux MC, Schramm S, Application of direct analysis in real time coupled to mass spectrometry (DART-MS) for the analysis of environmental contaminants, Direct Analysis in Real Time Mass Spectrometry2017.

  12. Kubec R, Cody RB, Dane A J, Musah RA, Schraml J, Vattekkatte, A.; Block, E., Applications of direct analysis in real time− mass spectrometry (DART-MS) in allium chemistry.(Z)-butanethial S-oxide and 1-butenyl thiosulfinates and their S-(E)-1-butenylcysteine S-oxide precursor from Allium siculum. J Agric Food Chem. 2010, 58 (2), 1121–1128. https://doi.org/10.1021/jf903733e.

  13. Hajslova J, Cajka T, Vaclavik L. Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. TrAC, Trends Anal Chem. 2011;30(2):204–18. https://doi.org/10.1016/j.trac.2010.11.001.

    Article  CAS  Google Scholar 

  14. Barnett I, Bailey FC, Zhang M. Detection and classification of ignitable liquid residues in the presence of matrix interferences by using direct analysis in real time mass spectrometry. J Forensic Sci. 2019;64(5):1486–94. https://doi.org/10.1111/1556-4029.14029.

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Li X, Li Z, Zhang Y, Bai Y, Liu H. Online coupling of in-tube solid-phase microextraction with direct analysis in real time mass spectrometry for rapid determination of triazine herbicides in water using carbon-nanotubes-incorporated polymer monolith. Anal Chem. 2014;86(10):4739–47. https://doi.org/10.1021/ac500382x.

    Article  CAS  PubMed  Google Scholar 

  16. **g W, Zhou Y, Wang J, Zhu Y, Lv Y, Bi W, Chen DDY. Sorbent and solvent co-enhanced direct analysis in real time-mass spectrometry for high-throughput determination of trace pollutants in water. Talanta 2020, 208, 120378. https://doi.org/10.1016/j.talanta.2019.120378.

  17. Wang J, Du Q, You X, Lv Y, Bi W, Li H, Chen DDY. Solvent-free high-throughput analysis of herbicides in environmental water. Analytica chimica acta 2019, 1071, 8–1 https://doi.org/10.1016/j.aca.2019.04.024.

  18. **g W, Zhou Y, Wang J, Ni M, Bi W, Chen DDY. Dispersive magnetic solid-phase extraction coupled to direct analysis in real time mass spectrometry for high-throughput analysis of trace environmental contaminants. Anal Chem. 2019;91(17):11240–6. https://doi.org/10.1021/acs.analchem.9b02197.

    Article  CAS  PubMed  Google Scholar 

  19. Tirapegui C, Jara F, Guerrero J, Rezende MC. Host–guest interactions in cyclodextrin inclusion complexes with solvatochromic dyes. J Phys Org Chem. 2006;19(11):786–92. https://doi.org/10.1002/poc.1080.

    Article  CAS  Google Scholar 

  20. Schneider HJ, Yatsimirsky A. Selectivity in supramolecular host-guest complexes. Chem Soc Rev. 2008;37:263–77. https://doi.org/10.1039/B612543N.

    Article  CAS  PubMed  Google Scholar 

  21. Dodziuk; Helena, Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley-VCH: 2006. https://doi.org/10.1002/3527608982.

  22. Crini G. A history of cyclodextrins. Chem Rev. 2014;114(21):10940–75. https://doi.org/10.1021/cr500081p.

    Article  CAS  PubMed  Google Scholar 

  23. D. Duchêne, Cyclodextrins and their inclusion complexes1982.

  24. Okumura H, Kawaguchi Y, Harada A. Preparation and characterization of inclusion complexes of poly (dimethylsiloxane) s with cyclodextrins. Macromolecules. 2001;34(18):6338–43. https://doi.org/10.1021/ma010516i.

    Article  CAS  Google Scholar 

  25. Dodziuk, Helena, cyclodextrins and their complexes: chemistry, analytical methods, applications, Wiley-VCH2006. https://doi.org/10.1002/3527608982

  26. Liu J, Liu G, Liu W. Preparation of water-soluble β-cyclodextrin/poly (acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions. Chem Eng J. 2014;257:299–308. https://doi.org/10.1016/j.cej.2014.07.021.

    Article  CAS  Google Scholar 

  27. Ma Q, Liu X, Zhang Y, Chen L, Dang X, Ai Y, Chen H. Fe3O4 nanoparticles coated with polyhedral oligomeric silsesquioxanes and β-cyclodextrin for magnetic solid-phase extraction of carbaryl and carbofuran. J Sep Sci. 2020;43(8):1514–22. https://doi.org/10.1002/jssc.201900896.

    Article  CAS  PubMed  Google Scholar 

  28. Hou X, Lu X, Niu P, Tang S, Wang L, Guo Y. β-Cyclodextrin-modified three-dimensional graphene oxide-wrapped melamine foam for the solid-phase extraction of flavonoids. J Sep Sci. 2018;41(10):2207–13. https://doi.org/10.1002/jssc.201701322.

    Article  CAS  PubMed  Google Scholar 

  29. Fu Yl, Hu Yl, Zheng Yj, Li GK. Preparation and application of poly (dimethylsiloxane)/β‐cyclodextrin solid‐phase microextraction fibers. J. Sep. Sci. 2006, 29 (17), 2684–2691 https://doi.org/10.1002/jssc.200600116.

  30. Zhang S, Li Z, Wang C, Wang Z. Cyclodextrin-functionalized reduced graphene oxide as a fiber coating material for the solid-phase microextraction of some volatile aromatic compounds. J Sep Sci. 2015;38(10):1711–20. https://doi.org/10.1002/jssc.201401363.

    Article  CAS  PubMed  Google Scholar 

  31. König WA, Gehrcke B, Runge T, Wolf C. Gas chromatographic separation of atropisomeric alkylated and polychlorinated biphenyls using modified cyclodextrins. J High Resolut Chromatogr. 1993;16(6):376–8. https://doi.org/10.1002/jhrc.1240160609.

    Article  Google Scholar 

  32. Schurig V, Nowotny HP. Gas chromatographic separation of enantiomers on cyclodextrin derivatives. Angew Chem, Int Ed Engl. 1990;29(9):939–57. https://doi.org/10.1002/anie.199009393.

    Article  Google Scholar 

  33. Sankaranarayanan RK, Rajendiran N. Nanorod formation of cyclodextrin-covered sudan dyes through supramolecular self-assembly. J Exp Nanosci. 2015;10(6):407–28. https://doi.org/10.1080/17458080.2013.840934.

    Article  CAS  Google Scholar 

  34. Bowser MT, Kranack AR, Chen D. Analyte-additive interactions in nonaqueous capillary electrophoresis: a critical review. TrAC, Trends Anal Chem. 1998;17(7):424–34. https://doi.org/10.1016/S0165-9936(98)00032-6.

    Article  CAS  Google Scholar 

  35. Jian Z, Rong W, Chen Z, Stir bar sorptive extraction with a graphene oxide framework-functionalized stainless-steel wire for the determination of Sudan dyes in water samples. Anal. Methods 2019, 11. https://doi.org/10.1039/C9AY00321E.

  36. Jiang C, Sun Y, Yu X, Zhang L, Sun X, Gao Y. Zhang, H.; Song, D., Removal of sudan dyes from water with C18-functional ultrafine magnetic silica nanoparticles. Talanta 2012, 89, 38–46. https://doi.org/10.1016/j.talanta.2011.11.052.

  37. Zhao C, Zhao T, Liu X, Zhang H. A novel molecularly imprinted polymer for simultaneous extraction and determination of sudan dyes by on-line solid phase extraction and high performance liquid chromatography. J Chromatogr A. 2010;1217(45):6995–7002. https://doi.org/10.1016/j.chroma.2010.09.005.

    Article  CAS  PubMed  Google Scholar 

  38. Xu B, Wang Y, ** R, Li X, Song D, Zhang H, Sun Y. Magnetic solid-phase extraction based on Fe3O4@polyaniline particles followed by ultrafast liquid chromatography for determination of Sudan dyes in environmental water samples. Anal Methods. 2015;7(4):1606–14. https://doi.org/10.1039/C4AY02645D.

    Article  CAS  Google Scholar 

  39. Wang Y, Sun Y, Wang Y, Jiang C, Yu X, Gao Y, Zhang H, Song D. Determination of Sudan dyes in environmental water by magnetic mesoporous microsphere-based solid phase extraction ultrafast liquid chromatography. Anal Methods. 2013;5(6):1399. https://doi.org/10.1039/C3AY26357F.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Jiangsu Agricultural Science and Technology Innovation Fund, China (Grant No. SCX(20)3083), the Natural Science Foundation of Hebei Province (B2018201270), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wentao Bi or David Da Yong Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7651 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, S., Ge, W. et al. Influence of host–guest interactions on analytical performance of direct analysis in real-time mass spectrometry. Anal Bioanal Chem 415, 4343–4352 (2023). https://doi.org/10.1007/s00216-023-04539-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04539-4

Keywords

Navigation