Log in

A smart paper-based electrochemical sensor for reliable detection of iron ions in serum

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The fast-growing healthcare demand for user-friendly and affordable analytical tools is driving the efforts to develop reliable platforms for the customization of therapy based on individual health conditions. In this overall scenario, we developed a paper-based electrochemical sensor for the quantification of iron ions in serum as a cost-effective sensing tool for the correct supplement administration. In detail, the working electrode of the screen-printed device has been modified with a nanocomposite constituted of carbon black and gold nanoparticles with a drop-casting procedure. Square wave voltammetry has been adopted as an electrochemical technique. This sensor was further modified with Nafion for iron quantification in serum after sample treatment with trifluoroacetic acid. Under optimized conditions, iron ions have been detected with a LOD down to 0.05 mg/L and a linearity up to 10 mg/L in standard solution. The obtained results have been compared with reference methods namely commercial colorimetric assay and atomic absorption spectroscopy, obtaining a good correlation within the experimental errors. These results demonstrated the suitability of the developed paper-based sensor for future applications in precision medicine of iron-deficiency diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Healthcare in 2030: goodbye hospital, hello home-spital. In: World Economic Forum.https://www.weforum.org/agenda/2016/11/healthcare-in-2030-goodbye-hospital-hello-home-spital/. Accessed 27 Sep 2022.

  2. Land KJ, Boeras DI, Chen X-S, Ramsay AR, Peeling RW. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat Microbiol. 2019;4:46–54.

    Article  CAS  Google Scholar 

  3. Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trend Biotechnol. 2015;33:692–705.

    Article  CAS  Google Scholar 

  4. Yan T, Zhang G, Chai H, Qu L, Zhang X. Flexible biosensors based on colorimetry, fluorescence, and electrochemistry for point-of-care testing. Front Bioeng Biotechnol. 2021;9: 753692.

    Article  Google Scholar 

  5. Yang J, Wang K, Xu H, Yan W, ** Q, Cui D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: a review. Talanta. 2019;202:96–110.

    Article  CAS  Google Scholar 

  6. Gałuszka A, Migaszewski Z, Namiesnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC - Trends Anal Chem. 2013;50:78–84.

    Article  Google Scholar 

  7. Nowak PM, Wietecha-Posłuszny R, Pawliszyn J. White analytical chemistry: an approach to reconcile the principles of green analytical chemistry and functionality. TrAC - Trends Anal Chem. 2021;138: 116223.

    Article  CAS  Google Scholar 

  8. Noviana E, Henry CS. Simultaneous electrochemical detection in paper-based analytical devices. Curr Opin Electrochem. 2020;23:1–6.

    Article  CAS  Google Scholar 

  9. Meredith NA, Quinn C, Cate DM, Reilly TH, Volckens J, Henry CS. Paper-based analytical devices for environmental analysis. Analyst. 2016;141:1874–87.

    Article  CAS  Google Scholar 

  10. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87:19–41.

    Article  CAS  Google Scholar 

  11. Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the develo** world: microfluidic paper-based analytical devices. Anal Chem. 2010;82:3–10.

    Article  CAS  Google Scholar 

  12. Kung CT, Hou CY, Wang YN, Fu LM. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sensor Actuat B-Chem. 2019;301: 126855.

    Article  CAS  Google Scholar 

  13. Noviana E, Carrão DB, Pratiwi R, Henry CS. Emerging applications of paper-based analytical devices for drug analysis: a review. Anal Chim Acta. 2020;1116:70–90.

    Article  CAS  Google Scholar 

  14. Arduini F, Micheli L, Scognamiglio V, Mazzaracchio V, Moscone D. Sustainable materials for the design of forefront printed (bio) sensors applied in agrifood sector. TrAC - Trends Anal Chem. 2020;128: 115909.

    Article  CAS  Google Scholar 

  15. Arduini F. Nanomaterials and cross-cutting technologies for fostering smart electrochemical biosensors in the detection of chemical warfare agents. Appl Sci. 2021;2021(11):720.

    Article  Google Scholar 

  16. Arduini F. Electrochemical paper-based devices: when the simple replacement of the support to print ecodesigned electrodes radically improves the features of the electrochemical devices. Curr Opin Electrochem. 2022;35: 101090.

    Article  CAS  Google Scholar 

  17. Cinti S, Fiore L, Massoud R, Cortese C, Moscone D, Palleschi G, Arduini F. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta. 2018;179:186–92.

    Article  CAS  Google Scholar 

  18. Maier D, Laubender E, Basavanna A, Schumann S, Güder F, Urban GA, Dincer C. Toward continuous monitoring of breath biochemistry: a paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS sensors. 2019;4:2945–51.

    Article  CAS  Google Scholar 

  19. Colozza N, Tazzioli S, Sassolini A, Agosta L, di Monte MG, Hermansson K, Arduini F. Multiparametric analysis by paper-assisted potentiometric sensors for diagnostic and monitoring of reinforced concrete structures. Sensor Actuat B-Chem. 2021;345: 130352.

    Article  CAS  Google Scholar 

  20. Bagheri N, Mazzaracchio V, Cinti S, Colozza N, Di Natale C, Netti PA, Saraji M, Roggero S, Moscone D, Arduini F. Electroanalytical sensor based on gold-nanoparticle-decorated paper for sensitive detection of copper ions in sweat and serum. Anal Chem. 2021;93:5225–33.

    Article  CAS  Google Scholar 

  21. Caratelli V, Meo ED, Colozza N, Fabiani L, Fiore L, Moscone D, Arduini F. Nanomaterials and paper-based electrochemical devices: merging strategies for fostering sustainable detection of biomarkers. J Mater Chem B. 2022;10:9021–39.

    Article  CAS  Google Scholar 

  22. McDowell LR. Minerals in animal and human nutrition. 2nd ed. Amsterdam: Elsevier Science; 2003. p. 660.

    Google Scholar 

  23. Hurrell RF. Bioavailability of iron. Eur J Clin Nutr. 1997;51:S4-8.

    Google Scholar 

  24. Wood RJ, Ronnenberg A. Iron. In: Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ, editors. Modern nutrition in health and disease. 10th ed. Baltimore: Lippinco Williams & Wilkins; 2005. p. 248–70.

    Google Scholar 

  25. Nadadur SS, Srirama K, Mudipalli A. Iron transport and homeostasis mechanisms: their role in health and disease. Indian J Med Res. 2008;128:533–44.

    CAS  Google Scholar 

  26. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19:164–74.

    Google Scholar 

  27. Burtis CA, Bruns DE, Sawyer BG, Tietz NW. Tietz fundamentals of clinical chemistry and molecular diagnostics. 7th ed. St. Louis, Missouri: Elsevier/Saunders; 2015.

    Google Scholar 

  28. WHO. Report of the WHO informal consultation on hookworm infection and anaemia in girls and women. Geneva: World Health Organization; 1995. p. 46.

    Google Scholar 

  29. Zimmermann MB, Hurrell RF. Nutritional iron deficiency. Lancet. 2007;370:115–20.

    Article  Google Scholar 

  30. Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003;23:41–58.

    Article  CAS  Google Scholar 

  31. Failla ML. Trace elements and host defense: recent advances and continuing challenges. J Nutr. 2003;133:S1443–7.

    Article  Google Scholar 

  32. Viteri FE, Torun B. Anemia and physical work capacity. In: Garby L, editor. Clinics in Hematology, vol. 3. London: WB Saunders; 1974. p. 609–26.

    Google Scholar 

  33. Georgieff MK, Krebs NF, Cusick SE. The benefits and risks of iron supplementation in pregnancy and childhood. Annu Rev Nutr. 2019;39:121–46.

    Article  CAS  Google Scholar 

  34. Seymour CW, Gomez H, Chang C-CH, Clermont G, Kellum JA, Kennedy J, Yende S, Angus DC. Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness. Crit Care. 2017;21:257.

    Article  Google Scholar 

  35. Liang L, D’Haese PC, Lamberts LV, De Broe ME. Direct determination of iron in urine and serum using graphite furnace atomic absorption spectrometry. Analyst. 1989;114:143–7.

    Article  CAS  Google Scholar 

  36. Kawasaki N, Tanimoto T, Tanaka A, Hayakawa T, Miyasaka N. Determination of non-protein-bound iron in human synovial fluid by high-performance liquid chromatography with electrochemical detection. J Chromatograph B. 1994;656:436–40.

    Article  CAS  Google Scholar 

  37. Dorner K, Gustmann H, Sippell W. A new method for the determination of serum iron: potentiostatic coulometry with the Ferrochem 3050. J Chim Chem Clin Biochem. 1981;19:967–70.

    CAS  Google Scholar 

  38. Kremplova M, Krejcova L, Hynek D, Barath P, Majzlik P, Horak V, Adam V, Sochor J, Cernei N, Hubalek J, Vrba R, Kizek R. Automated electrochemical detection of iron ions in erythrocytes from MeLiM Minipigs suffering from melanoma. Int J Electrochem Sci. 2012;7:5893–909.

    CAS  Google Scholar 

  39. Hourani MK, Amayreh M, Hourani WH. A voltammetric sensor based on iodine-coated platinum electrode for determination of iron in blood serum. Anal Bioanal Electrochem. 2018;10:1620–8.

    CAS  Google Scholar 

  40. Vicentini FC, Ravanini AE, Figueiredo-Filho LCS, Iniesta J, Banks CE, Fatibello-Filho O. Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim Acta. 2015;157:125–33.

    Article  CAS  Google Scholar 

  41. Mazzaracchio V, Tomei MR, Cacciotti I, Chiodoni A, Novara C, Castellino M, Scordo G, Amine A, Moscone D, Arduini F. Inside the different types of carbon black as nanomodifiers for screen-printed electrodes. Electrochim Acta. 2019;317:673–83.

    Article  CAS  Google Scholar 

  42. Carvalho RC, Mandil A, Prathish KP, Amine A, Brett CMA. Carbon nanotube, carbon black and copper nanoparticle modified screen printed electrodes for amino acid determination. Electroanal. 2013;25:903–13.

    Article  CAS  Google Scholar 

  43. Cinti S, Politi S, Moscone D, Palleschi G, Arduini F. Strip** analysis of As(III) by means of screen-printed electrodes modified with gold nanoparticles and carbon Black Nanocomposite. Electroanal. 2014;26:931–9.

    Article  CAS  Google Scholar 

  44. Cinti S, Santella F, Moscone D, Arduini F. Hg2+ detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles. Environ Sci Pollut Res. 2016;23:8192–9.

    Article  CAS  Google Scholar 

  45. Arduini F, Zanardi C, Cinti S, Terzi F, Moscone D, Palleschi G, Seeber R. Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite. Sensor Actuat B-Chem. 2015;212:536–43.

    Article  CAS  Google Scholar 

  46. Zakharova EA, Elesova EE, Noskova GN, Lu M, Compton RG. Direct voltammetric determination of total iron with a gold microelectrode ensemble. Electroanal. 2012;24:2061–9.

    Article  CAS  Google Scholar 

  47. Caratelli V, Fillo S, D’Amore N, Rossetto O, Pirazzini M, Moccia M, Avitabile C, Moscone D, Lista F, Arduini F. Paper-based electrochemical peptide sensor for on-site detection of botulinum neurotoxin serotype A and C. Biosens Bioelectron. 2021;183: 113210.

    Article  CAS  Google Scholar 

  48. Rocks FB, Sherwood RA, Turner Z. J, Riley C. Serum iron and total iron-binding capacity determination by flow injection analysis with atomic absorption detection Ann Clin Biochem. 1983;20:72–6.

    CAS  Google Scholar 

  49. Yu Q, Huang H, Peng X, Ye Z. Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement. Nanoscale. 2011;3:3868.

    Article  CAS  Google Scholar 

  50. Hoyer B, Florence TM, Batley GE. Application of polymer-coated glassy carbon electrodes in anodic strip** voltammetry. Anal Chem. 1987;59:1608–14.

    Article  CAS  Google Scholar 

  51. Torma F, Kádár M, Tóth K, Tatár E. Nafion®/2,2 bipyridyl-modified bismuth film electrode for anodic strip** voltammetry Anal Chim Acta. 2008;619:173.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Giulio Mengozzi of San Giovanni Battista Hospital “Molinette” for serum samples, and “Cardiovascular lab s.r.l (Milan, Italy)” for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincenzo Mazzaracchio or Fabiana Arduini.

Ethics declarations

Source of biological material

Human serum samples were obtained from people enrolled for routine analysis at the San Giovanni Battista Hospital “Molinette” (Turin, Italy). The sampling of blood at the San Giovanni Battista Hospital “Molinette” (Turin, Italy) was carried out by medical doctors from patients and healthy subjects.

Consent to participate

Written informed consent was obtained from all the patients and healthy subjects.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Electrochemical Biosensors – Driving Personalized Medicine with guest editors Susana Campuzano Ruiz and Maria Jesus Lobo-Castañón.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72.3 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzaracchio, V., Bagheri, N., Chiara, F. et al. A smart paper-based electrochemical sensor for reliable detection of iron ions in serum. Anal Bioanal Chem 415, 1149–1157 (2023). https://doi.org/10.1007/s00216-023-04537-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04537-6

Keywords

Navigation