Log in

Rapid and sustainable HPLC method for the determination of uremic toxins in human plasma samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Protein-bound uremic toxins, mainly indoxyl sulfate (3-INDS), p-cresol sulfate (pCS), and indole-3-acetic acid (3-IAA) but also phenol (Pol) and p-cresol (pC), are progressively accumulated during chronic kidney disease (CKD). Their accurate measurement in biomatrices is demanded for timely diagnosis and adoption of appropriate therapeutic measures. Multianalyte methods allowing the establishment of a uremic metabolite profile are still missing. Hence, the aim of this work was to develop a rapid and sensitive method based on high-performance liquid chromatography with fluorescence detection for the simultaneous quantification of Pol, 3-IAA, pC, 3-INDS, and pCS in human plasma. Separation was attained in 12 min, using a monolithic C18 column and isocratic elution with acetonitrile and phosphate buffer containing an ion-pairing reagent, at a flow rate of 2 mL min−1. Standards were prepared in plasma and quantification was performed using the background subtraction approach. LOQ values were ≤ 0.2 µg mL−1 for all analytes except for pCS (LOQ of 2 µg mL−1). The method proved to be accurate (93.5–112%) and precise (CV ≤ 14.3%). The multianalyte application of the method, associated to a reduced sample volume (50 µL), a less toxic internal standard (eugenol) in comparison to the previously applied 2,6-dimethylphenol and 4-ethylphenol, and a green extraction solvent (ethanol), resulted in the AGREE score of 0.62 which is in line with the recent trend of green and sustainable analytical chemistry. The validated method was successfully applied to the analysis of plasma samples from control subjects exhibiting normal levels of uremic toxins and CKD patients presenting significantly higher levels of 3-IAA, pC, 3-INDS, and pCS that can be further investigated as biomarkers of disease progression.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krautkramer KA, Fan J, Backhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19(2):77–94. https://doi.org/10.1038/s41579-020-0438-4.

    Article  CAS  Google Scholar 

  2. Martinez KB, Leone V, Chang EB. Microbial metabolites in health and disease: navigating the unknown in search of function. J Biol Chem. 2017;292(21):8553–9. https://doi.org/10.1074/jbc.R116.752899.

    Article  CAS  Google Scholar 

  3. Yu DH, Meng X, de Vos WM, Wu H, Fang XX, Maiti AK. Implications of gut microbiota in complex human diseases. Int J Mol Sci. 2021;22(23):12661. https://doi.org/10.3390/ijms222312661.

    Article  CAS  Google Scholar 

  4. Rysz J, Franczyk B, Lawinski J, Olszewski R, Cialkowska-Rysz A, Gluba-Brzozka A. The impact of CKD on uremic toxins and gut microbiota. Toxins. 2021;13(4):252. https://doi.org/10.3390/toxins13040252.

    Article  CAS  Google Scholar 

  5. Sampaio-Maia B, Simões-Silva L, Pestana M, Araújo R, Soares-Silva IJ. The role of the gut microbiome on chronic kidney disease. In: Sariaslani S, Gadd GM, editors. Advances in Applied Microbiology, vol. 96. Amsterdam: Elsevier; 2016. p. 65–94.

    Google Scholar 

  6. Wang XF, Yang ST, Li SH, Zhao L, Hao YL, Qin JJ, et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut. 2020;69(12):2131–42. https://doi.org/10.1136/gutjnl-2019-319766.

    Article  CAS  Google Scholar 

  7. Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins. 2018;10(1):1–57. https://doi.org/10.3390/toxins10010033.

    Article  CAS  Google Scholar 

  8. Vanholder R, Schepers E, Pletinck A, Neirynck N, Glorieux G. An update on protein-bound uremic retention solutes. J Renal Nutr. 2012;22(1):90–4. https://doi.org/10.1053/j.jrn.2011.10.026.

    Article  CAS  Google Scholar 

  9. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258–70. https://doi.org/10.1681/asn.2011121175.

    Article  CAS  Google Scholar 

  10. EUTox. The European Uremic Toxins (EUTox) database. Available online at www.uremic-toxins.org. Accessed 24 Aug 2022.

  11. Lim YJ, Sidor NA, Tonial NC, Che A, Urquhart BL. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins. 2021;13(2):142. https://doi.org/10.3390/toxins13020142.

    Article  CAS  Google Scholar 

  12. Mair RD, Sirich TL, Plummer NS, Meyer TW. Characteristics of colon-derived uremic solutes. Clin J Am Soc Nephrol. 2018;13(9):1398–404. https://doi.org/10.2215/cjn.03150318.

    Article  CAS  Google Scholar 

  13. Mishima E, Fukuda S, Mukawa C, Yuri A, Kanemitsu Y, Matsumoto Y, et al. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 2017;92(3):634–45. https://doi.org/10.1016/j.kint.2017.02.011.

    Article  CAS  Google Scholar 

  14. Gryp T, De Paepe K, Vanholder R, Kerckhof FM, Van Biesen W, Van de Wiele T, et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease see. Kidney Int. 2020;97(6):1230–42. https://doi.org/10.1016/j.kint.2020.01.028.

    Article  CAS  Google Scholar 

  15. Belinato JR, Acquaro VR, Cappelini LTD, Augusto F. New prospects and problems in sample preparation methods for microbiome analysis. Trac-Trends Anal Chem. 2021;143: 116356. https://doi.org/10.1016/j.trac.2021.116356.

    Article  CAS  Google Scholar 

  16. Zhou LN, Yu D, Zheng SJ, Ouyang RZ, Wang YT, Xu GW. Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. Trac-Trends Anal Chem. 2021;143: 116375. https://doi.org/10.1016/j.trac.2021.116375.

    Article  CAS  Google Scholar 

  17. Al Za’abi M, Ali B, Al Toubi M. HPLC-fluorescence method for measurement of the uremic toxin indoxyl sulfate in plasma. J Chromatogr Sci. 2013;51(1):40-3. https://doi.org/10.1093/chromsci/bms103.

  18. Calaf R, Cerini C, Genovesio C, Verhaeghe P, Jourde-Chiche N, Berge-Lefranc D, et al. Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay. J Chromatogr B. 2011;879(23):2281–6. https://doi.org/10.1016/j.jchromb.2011.06.014.

    Article  CAS  Google Scholar 

  19. Cuoghi A, Caiazzo M, Bellei E, Monari E, Bergamini S, Palladino G, et al. Quantification of p-cresol sulphate in human plasma by selected reaction monitoring. Anal Bioanal Chem. 2012;404(6–7):2097–104. https://doi.org/10.1007/s00216-012-6277-z.

    Article  CAS  Google Scholar 

  20. de Loor H, Poesen R, De Leger W, Dehaen W, Augustijns P, Evenepoel P, et al. A liquid chromatography-tandem mass spectrometry method to measure a selected panel of uremic retention solutes derived from endogenous and colonic microbial metabolism. Anal Chim Acta. 2016;936:149–56. https://doi.org/10.1016/j.aca.2016.06.057.

    Article  CAS  Google Scholar 

  21. Fabresse N, Uteem I, Lamy E, Massy Z, Larabi IA, Alvarez JC. Quantification of free and protein bound uremic toxins in human serum by LC-MS/MS: comparison of rapid equilibrium dialysis and ultrafiltration. Clin Chim Acta. 2020;507:228–35. https://doi.org/10.1016/j.cca.2020.04.032.

    Article  CAS  Google Scholar 

  22. Korytowska N, Wyczalkowska-Tomasik A, Wisniewska A, Paczek L, Giebultowicz J. Development of the LC-MS/MS method for determining the p-cresol level in plasma. J Pharm Biomed Anal. 2019;167:149–54. https://doi.org/10.1016/j.jpba.2019.01.041.

    Article  CAS  Google Scholar 

  23. Martinez AW, Recht NS, Hostetter TH, Meyer TW. Removal of p-cresol sulfate by hemodialysis. J Am Soc Nephrol. 2005;16(11):3430–6. https://doi.org/10.1681/asn.2005030310.

    Article  CAS  Google Scholar 

  24. Pretorius CJ, McWhinney BC, Sipinkoski B, Johnson LA, Rossi M, Campbell KL, et al. Reference ranges and biological variation of free and total serum indoxyl- and p-cresyl sulphate measured with a rapid UPLC fluorescence detection method. Clin Chim Acta. 2013;419:122–6. https://doi.org/10.1016/j.cca.2013.02.008.

    Article  CAS  Google Scholar 

  25. Wang ZP, Jiang H, Chen XJ, Song XH, Xu FJ, Chen FC, et al. A rapid and sensitive method for simultaneous determination of eight protein-bound uremic toxins in human serum by UHPLC-MS/MS: application in assessing peritoneal dialysis. J Pharm Biomed Anal. 2020;186: 113312. https://doi.org/10.1016/j.jpba.2020.113312.

    Article  CAS  Google Scholar 

  26. Gu LQ, Shi HY, Zhang RW, Wei Z, Bi KS, Chen XH. Simultaneous determination of five specific and sensitive nephrotoxicity biomarkers in serum and urine samples of four drug-induced kidney injury models. J Chromatogr Sci. 2017;55(1):60–8. https://doi.org/10.1093/chromsci/bmw150.

    Article  CAS  Google Scholar 

  27. Whiley L, Nye LC, Grant I, Andreas N, Chappell KE, Sarafian MH, et al. Ultrahigh-performance liquid chromatography tandem mass spectrometry with electrospray ionization quantification of tryptophan metabolites and markers of gut health in serum and plasma—application to clinical and epidemiology cohorts. Anal Chem. 2019;91(8):5207–16. https://doi.org/10.1021/acs.analchem.8b05884.

    Article  CAS  Google Scholar 

  28. Fagugli RM, De Smet R, Buoncristiani U, Lameire N, Vanholder R. Behavior of non-protein-bound and protein-bound uremic solutes during daily hemodialysis. Am J Kidney Dis. 2002;40(2):339–47. https://doi.org/10.1053/ajkd.2002.34518.

    Article  CAS  Google Scholar 

  29. Meert N, Schepers E, Glorieux G, Van Landschoot M, Goeman JL, Waterloos MA, et al. Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: clinical data and pathophysiological implications. Nephrol Dial Transplant. 2012;27(6):2388–96. https://doi.org/10.1093/ndt/gfr672.

    Article  CAS  Google Scholar 

  30. Oda A, Suzuki Y, Sato B, Sato H, Tanaka R, Ono H, et al. Highly sensitive simultaneous quantification of indoxyl sulfate and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid in human plasma using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. J Sep Sci. 2022;45(10):1672–82. https://doi.org/10.1002/jssc.202100950.

    Article  CAS  Google Scholar 

  31. Prokopienko AJ, West RE, Stubbs JR, Nolin TD. Development and validation of a UHPLC-MS/MS method for measurement of a gut-derived uremic toxin panel in human serum: an application in patients with kidney disease. J Pharm Biomed Anal. 2019;174:618–24. https://doi.org/10.1016/j.jpba.2019.06.033.

    Article  CAS  Google Scholar 

  32. de Loor H, Meijers BKI, Meyer TW, Bammens B, Verbeke K, Dehaen W, et al. Sodium octanoate to reverse indoxyl sulfate and p-cresyl sulfate albumin binding in uremic and normal serum during sample preparation followed by fluorescence liquid chromatography. J Chromatogr A. 2009;1216(22):4684–8. https://doi.org/10.1016/j.chroma.2009.04.015.

    Article  CAS  Google Scholar 

  33. De Smet R, David F, Sandra P, Van Kaer J, Lesaffer G, Dhondt A, et al. A sensitive HPLC method for the quantification of free and total p-cresol in patients with chronic renal failure. Clin Chim Acta. 1998;278(1):1–21. https://doi.org/10.1016/s0009-8981(98)00124-7.

    Article  Google Scholar 

  34. Sun XD, Wu HL, Liu Z, Chen Y, Chen JC, Cheng L, et al. Target-based metabolomics for fast and sensitive quantification of eight small molecules in human urine using HPLC-DAD and chemometrics tools resolving of highly overlap** peaks. Talanta. 2019;201:174–84. https://doi.org/10.1016/j.talanta.2019.03.090.

    Article  CAS  Google Scholar 

  35. Wu IW, Hsu KH, Hsu HJ, Lee CC, Sun CY, Tsai CJ, et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients—a prospective cohort study. Nephrol Dial Transplant. 2012;27(3):1169–75. https://doi.org/10.1093/ndt/gfr453.

    Article  CAS  Google Scholar 

  36. European Medicines Agency. Guideline on bioanalytical method validation EMEA/CHMP/EWP/192217/2009. 2011.

  37. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH guideline M10 on bioanalytical method validation EMA/CHMP/ICH/172948/2019, Step 2b, Draft version, 2019.

  38. Thakare R, Chhonker YS, Gautam N, Alamoudi JA, Alnouti Y. Quantitative analysis of endogenous compounds. J Pharm Biomed Anal. 2016;128:426–37. https://doi.org/10.1016/j.jpba.2016.06.017.

    Article  CAS  Google Scholar 

  39. Gachet MS, Rhyn P, Bosch OG, Quednow BB, Gertsch J. A quantitiative LC-MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N-acylethanolamines and steroids in human plasma. J Chromatogr B. 2015;976:6–18. https://doi.org/10.1016/j.jchromb.2014.11.001.

    Article  CAS  Google Scholar 

  40. Barbosa AI, Fernandes SR, Machado S, Sousa P, Sze OY, Silva EMP, et al. Fast monolith-based chromatographic method for determination of methotrexate in drug delivery studies. Microchem J. 2019;148:185–9. https://doi.org/10.1016/j.microc.2019.04.075.

    Article  CAS  Google Scholar 

  41. Peixoto PS, Silva EMP, Osório MV, Barreiros L, Lima JLFC, Segundo MA. Automatic solid-phase extraction by programmable flow injection coupled to chromatographic fluorimetric determination of fluoroquinolones. Anal Methods. 2018;10(18):2180–6. https://doi.org/10.1039/c8ay00327k.

    Article  CAS  Google Scholar 

  42. Ichinose N, Tojo S, Majima T. Fluorescence measurement of 3,5-dimethoxyphenol radical cation generated by pulse radiolysis in 1,2-dichloroethane. Chem Lett. 2000;10(10):1126–7. https://doi.org/10.1246/cl.2000.1126.

    Article  Google Scholar 

  43. Mawatari K-I, Atsumi M, Nakamura F, Yasuda M, Fukuuchi T, Yamaoka N, et al. Determination of dipicolinic acid in “natto” by high-performance liquid chromatography coupled with postcolumn photoirradiation with zinc acetate. Int J Tryptophan Res. 2019;12:1178646919852120. https://doi.org/10.1177/1178646919852120.

    Article  Google Scholar 

  44. Sajid M, Plotka-Wasylka J. Green analytical chemistry metrics: a review. Talanta. 2022;238: 123046. https://doi.org/10.1016/j.talanta.2021.123046.

    Article  CAS  Google Scholar 

  45. Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE—analytical greenness metric approach and software. Anal Chem. 2020;92(14):10076–82. https://doi.org/10.1021/acs.analchem.0c01887.

    Article  CAS  Google Scholar 

Download references

Funding

This work received financial support from PT national funds (FCT/MCTES, Fundação para a Ciência e a Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the projects UIDB/50006/2020 and UIDP/50006/2020, and also from the European Regional Development Fund through COMPETE 2020 — Programa Operacional Competitividade e Internacionalização (POCI) together with FCT/MCTES in the framework of the project PTDC/MEC-MCI/29777/2017. S. R. Fernandes thanks FCT and ESF (European Social Fund) through Norte 2020 (Programa Operacional Regional Norte) for her PhD grant (SFRH/BD/130948/2017 and COVID/BD/152406/2022). L. Barreiros acknowledges funding from FCT through program DL 57/2016–Norma transitória.

Author information

Authors and Affiliations

Authors

Contributions

LAPS: methodology, investigation, validation, writing — original draft. SC: investigation, validation, formal analysis, writing — review and editing. SRF: methodology, investigation, writing — review and editing. SSM: validation, formal analysis, writing — review and editing. LB: conceptualization, methodology, formal analysis, supervision, writing — original draft, writing — review and editing. BS-M: conceptualization, supervision, resources, funding acquisition, writing — review and editing. MAS: conceptualization, supervision, resources, project administration, funding acquisition, writing — review and editing.

Corresponding author

Correspondence to Luisa Barreiros.

Ethics declarations

Ethics approval and consent to participate

The study protocol was approved by the Ethics Committee at Centro Hospitalar de São João (ref. CES 87–15) and performed in agreement with the 1964 Helsinki declaration and subsequent revisions. Written informed consent was obtained from all participants before sample collection.

Conflict of interest

The authors declare no competing interests.

Additional information

Luís A. P. Silva and Stefano Campagnolo contributed equally to this work.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 898 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.A.P., Campagnolo, S., Fernandes, S.R. et al. Rapid and sustainable HPLC method for the determination of uremic toxins in human plasma samples. Anal Bioanal Chem 415, 683–694 (2023). https://doi.org/10.1007/s00216-022-04458-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04458-w

Keywords

Navigation