Log in

A novel electrochemical platform for assay of alkaline phosphatase based on amifostine and ATRP signal amplification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Alkaline phosphatase (ALP), an important hydrolase involved in dephosphorylation, is a common clinical indicator of many diseases. In the present study, we constructed a novel electrochemical sensor using amifostine as the substrate of ALP and activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) as a signal amplification strategy for sensitive determination of ALP activity. In particular, in the presence of ALP, the phosphate group of amifostine was hydrolyzed to form a sulfhydryl group, which could attach to a gold electrode via a sulfur–gold bond. Then, the initiator α-bromophenylacetic acid (BPAA) was linked to the hydrolysis product of amifostine through an amide bond, resulting in the production of electroactive polymer chains on the gold electrode by the monomer ferrocenylmethyl methacrylate (FMMA) via ARGET ATRP. Under optimal parameters, the electrochemical sensor demonstrated a limit of detection (LOD) of 1.71 mU mL−1 with a linear range of 5–100 mU mL−1. In addition to satisfactory selectivity, the potential application of this approach for ALP activity detection in human serum samples was demonstrated. Due to its efficiency, simplicity of operation, and cost-effectiveness, the proposed electrochemical sensor has great promise as a universal method for ALP assays and inhibitor screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shen CC, Li XZ, Rasooly A, Guo LY, Zhang KN, Yang MH. A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens Bioelectron. 2016;85:220–5.

    Article  CAS  Google Scholar 

  2. Sun J, Zhao JH, Bao XF, Wang QF, Yang XR. Alkaline phosphatase assay based on the chromogenic interaction of diethanolamine with 4-aminophenol. Anal Chem. 2018;90:6339–45.

    Article  CAS  Google Scholar 

  3. Song HY, Niu XH, Ye K, Wang LJ, Xu YH, Peng YX. A novel alkaline phosphatase activity sensing strategy combining enhanced peroxidase-mimetic feature of sulfuration-engineered CoOx with electrostatic aggregation. Anal Bioanal Chem. 2020;412:5551–61.

    Article  CAS  Google Scholar 

  4. Tong X, Zhu YF, Tong CY, Shi SY, Long RQ, Guo Y. Simultaneous sensing γ-glutamyl transpeptidase and alkaline phosphatase by robust dual-emission carbon dots. Anal Chim Acta. 2021;1178:338829.

  5. Zhao L, **e SZ, Song XJ, Wei JJ, Zhang Z, Li XH. Ratiometric fluorescent response of electrospun fibrous strips for real-time sensing of alkaline phosphatase in serum. Biosens Bioelectron. 2017;91:217–24.

    Article  CAS  Google Scholar 

  6. Ma CJ, Tan HL, Chen LL, Song YH, Xu FG, Chen SH, Wang L. A terbium chelate based fluorescent assay for alkaline phosphatase in biological fluid. Sensors Actuators B Chem. 2014;202:683–9.

    Article  CAS  Google Scholar 

  7. Bowers GN, McComb RB. A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase. Clin Chem. 1966;12:70–89.

    Article  CAS  Google Scholar 

  8. Zhan YJ, Yang ST, Chen LF, Zeng YB, Li L, Lin ZY, Guo LH, Xu W. Ultrahigh efficient FRET ratiometric fluorescence biosensor for visual detection of alkaline phosphatase activity and its inhibitor. Chem Eng. 2021;9:12922–9.

    CAS  Google Scholar 

  9. Chen JY, Wang MK, Su XG. Facile preparation of red emission Hg-doped ZnSe QDs and ratiometric determination of alkaline phosphatase based on in situ generation of dual fluorescent reporter. Sensors Actuators B Chem. 2021;345:130428.

    Article  CAS  Google Scholar 

  10. Yu LD, Wang YN, Zhang XY, Li NB, Luo HQ. A novel signal-on photoelectrochemical platform for highly sensitive detection of alkaline phosphatase based on dual Z-scheme CdS/Bi2S3/BiOCl composites. Sensors Actuators B Chem. 2021;340:129988.

    Article  CAS  Google Scholar 

  11. Wu Z, Zhou CH, Pan LJ, Zeng T, Zhu L, Pang DW, Zhang ZL. Reliable digital single molecule electrochemistry for ultrasensitive alkaline phosphatase detection. Anal Chem. 2016;88(18):9166–72.

    Article  CAS  Google Scholar 

  12. **ao FF, Yu YT, Wu Y, Tian LL, Zhao GY, Pang HL, Du J. Restoring the oxidase-like activity of his@AuNCs for the determination of alkaline phosphatase. Biosensors. 2021;11:174.

    Article  CAS  Google Scholar 

  13. Fan SN, Jiang XX, Yang MH, Wang XG. Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Anal Bioanal Chem. 2021;413:3955–63.

    Article  CAS  Google Scholar 

  14. Jiang H, Wang XM. Alkaline phosphatase responsive anodic electrochemiluminescence of CdSe nanoparticles. Anal Chem. 2012;84:6986–93.

    Article  CAS  Google Scholar 

  15. Miao P, Ning LM, Li XX, Shu YQ, Li GX. An electrochemical alkaline phosphatase biosensor fabricated with two DNA probes coupled with exonuclease. Biosens Bioelectron. 2011;27:178–82.

    Article  CAS  Google Scholar 

  16. Lee JY, Ahn JK, Park KS, Park HG. An impedimetric determination of alkaline phosphatase activity based on the oxidation reaction mediated by Cu2+ bound to poly-thymine DNA. RSC Adv. 2018;8:11241–6.

    Article  CAS  Google Scholar 

  17. Tang ZW, Chen HT, He HL, Ma CB. Assays for alkaline phosphatase activity: Progress and prospects. Trends Anal Chem. 2019;113:32–43.

    Article  CAS  Google Scholar 

  18. Zheng XK, Zhao LY, Wen DX, Wang XL, Yang HX, Feng WS, Kong JM. Ultrasensitive fluorescent detection of HTLV-II DNA based on magnetic nanoparticles and atom transfer radical polymerization signal amplification. Talanta. 2020;207:120290.

  19. Wang JS, Matyjaszewsk K. Controlled/living radical polymerization. Atom transfer radical. J Am Chem Soc. 1995;117:5614–5.

    Article  CAS  Google Scholar 

  20. Li XF, Lu J, Li ZT, Yang HY, Li WM, Liu YJ, Miao MS. Electrochemical detection of alkaline phosphatase activity via atom transfer radical polymerization. Bioelectrochemistry. 2022;144:107998.

    Article  CAS  Google Scholar 

  21. Sun HB, Qiu YL, Lu YJ, Kong JM, Zhang XJ. Ultrasensitive DNA electrochemical biosensor based on MnTBAP biomimetic catalyzed AGET ATRP signal amplification reaction. Chem Commun. 2020;56:6636–6639.

  22. Zhang JY, Liu QR, Ba YY, Cheng JM, Yang HX, Cui Y, Kong JM, Zhang JY. F-containing initiatior for ultrasensitive fluorescent detection of lung cancer DNA via atom transfer radical polymerization. Anal Chim Acta. 2020;1094:99–105.

    Article  CAS  Google Scholar 

  23. Zhu X, Wang WB, Lu J, Hao LL, Yang HX, Liu YJ, Si FC, Kong JM. Grafting of polymers via ring-opening polymerization for electrochemical assay of alkaline phosphatase activity. Anal Chim Acta. 2021;1185:339069.

    Article  CAS  Google Scholar 

  24. Dong H, Tang W, Matyjaszewski K. Well-defined high-molecularweight polyacrylonitrile via activators regenerated by electron transfer ATRP. Macromolecules. 2007;40:2974–7.

    Article  CAS  Google Scholar 

  25. Hu Q, Bao Y, Gan SY, Zhang YW, Han DX, Niu L. Amplified electrochemical biosensing of thrombin activity by RAFT polymerization. Anal Chem. 2020;92:3470–3476.

  26. Hu Q, Wang QW, Jiang CH, Zhang J, Kong JM, Zhang XJ. Electrochemically mediated polymerization for highly sensitive detection of protein kinase activity. Biosens Bioelectron. 2018;110:52–7.

    Article  CAS  Google Scholar 

  27. Zheng XK, Liu QR, Li MM, Feng WS, Yang HS, Kong JM. Dual atom transfer radical polymerization for ultrasensitive electrochemical DNA detection. Bioelectrochemistry. 2020;113:107462.

    Article  Google Scholar 

  28. Jiang H, Wang XM. Alkaline phosphatase-responsive anodic electrochemiluminescence of CdSe nanoparticles. Anal Chem. 2012;84:6986–93.

    Article  CAS  Google Scholar 

  29. Deng JJ, Yu P, Wang YX, Mao LQ. Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles. Anal Chem. 2015;87:3080–6.

    Article  CAS  Google Scholar 

  30. Li CM, Zhen SJ, Wang J, Li YF, Huang CZ. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens Bioelectron. 2013;43:366–71.

    Article  CAS  Google Scholar 

  31. Akhtar H, Silvana A. Nanoceria particles as catalytic amplifiers for alkaline phosphatase assays. Anal Chem. 2013;85:10028–32.

    Article  Google Scholar 

  32. Hu QQ, Fu YC, Xu XH, Qiao ZH, Wang RH, Zhang Y, Li YB. Colorimetric detection of acrylamide in potato chips based on nucleophile-initiated thiol-ene Michael addition. Analyst. 2015;141:1136–43.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the project of tackling of key scientific and technical problems in Henan Province (192102310033, 202102310149).

Author information

Authors and Affiliations

Corresponding authors

Correspondence to Huaixia Yang, **aofei Li or Yanju Liu.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 33 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, P., Lu, J. et al. A novel electrochemical platform for assay of alkaline phosphatase based on amifostine and ATRP signal amplification. Anal Bioanal Chem 414, 6955–6964 (2022). https://doi.org/10.1007/s00216-022-04264-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04264-4

Keywords

Navigation