Log in

Improved method for the determination of endocrine-disrupting chemicals in urine of school-age children using microliquid–liquid extraction and UHPLC-MS/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The presence of endocrine-disrupting chemicals in our daily life is increasing every day and, by extension, human exposure and the consequences thereof. Among these substances are bisphenols and parabens. Urine is used to analyze the exposure. The determination of 12 bisphenol homologues and 6 parabens is proposed. A procedure based on a method previously developed by our research group in 2014 is improved. The extraction yield is higher, because the new protocol is 5 times more efficient. Also, a comparison between calibration with pure standards and matrix calibration, to calculate the matrix effect, was also made. A high grade of matrix effect for all analytes was observed. In terms of validation, the limits of detection (LOD) were between 0.03 and 0.3 ng mL−1 and limits of quantification (LOQ) 0.1 to 1.0 ng mL−1, respectively, and the recovery is higher than 86.4% and lower than 113.6%, with a RSD lower than 13.5% in all cases. A methodology for accurate and sensitive quantification of bisphenol homologues together with parabens in human urine using UHPLC-MS/MS was developed. The method was successfully applied to 30 urine samples from children.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ao J, Zhang Q, Tang W, Yuan T, Zhang J. A simple, rapid and sensitive method for the simultaneous determination of eighteen environmental phenols in human urine. Chemosphere. 2021;278: 130949. https://doi.org/10.1016/j.chemosphere.2021.130494.

    Article  CAS  Google Scholar 

  2. Ashley-Martin J, Gaudreau E, Dumas P, Liang CL, Logvin A, Bélanger P, Provencher G, Gagne S, Foster W, Lanphear B, Arbuckle TE. Direct LC-MS/MS and indirect GC-MS/MS methods for measuring urinary bisphenol A concentrations are comparable. Environ Int. 2021;157: 106874. https://doi.org/10.1016/j.envint.2021.106874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lucarini F, Krasniqi T, Rosset GB, Roth N, Hopf NB, Broillet M-C, Staedler D. Exposure to new emerging bisphenols among young children in Switzerland. Int J Environ Res Public Health. 2020;17:4793. https://doi.org/10.3390/ijerph17134793.

    Article  CAS  PubMed Central  Google Scholar 

  4. Xu L, Hu Y, Zhu Q, Liao C, Jiang G. Several typical endocrine-disrupting chemicals in human urine from general population in China: regional and demographic-related differences in exposure risk. J Hazard Mater. 2022;424: 127489. https://doi.org/10.1016/j.jhazmat.2021.127489.

    Article  CAS  PubMed  Google Scholar 

  5. Çiftçi S, Yalçin SS, Samur G. Comparison of daily bisphenol A intake based on dietary and urinary levels in breatfeeding women. Reprod Toxicol. 2021;106:9–17. https://doi.org/10.1016/j.reprotox.2021.09.011.

    Article  CAS  PubMed  Google Scholar 

  6. Moon S, Seo MY, Choi K, Chang Y-S, Kim S-H, Park MJ. Urinary bisphenol A concentrations and the risk of obesity in Korean adults. Sci Rep. 2021;11:1603. https://doi.org/10.1038/s41598-021-80980-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu Y-J, Gao H-L, Liu H, Zhao N-W, Cheng Q, Zhang F-R, Ye J, Wang A-Q, Dou Y-J, Ma B, Zhu F, Xu X-L, Li C-J, Wu J, Shen N, Xue B. Urinary levels of dimethoate, bisphenol A and benzo[a]pyrene in first-year students of Hohai University from different geographical regions. BMC Public Health. 2021;21:1692. https://doi.org/10.1186/s12889-021-11726-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jang M, Yang H, Lee H, Lee KS, Oh JY, Jeon H, Ok YS, Hwang SY, Park Y, Oh DX. A sensitive environmental forensic method that determines bisphenol S and A exposure within receipt-handling through fingerprint analysis. J Hazard Mater. 2022;424: 127410. https://doi.org/10.1016/j.jhazmat.2021.127410.

    Article  CAS  PubMed  Google Scholar 

  9. Lee J, Ahn Y-A, Choi K, Park J, Moon H-B, Choi G, Lee JJ, Suh E, Kim H-J, Eun S-H, Kim G-H, Cho G, Kim SK, Kim S, Kim SY, Kim S, Eom S, Choi S, Kim YD, Kim S. Bisphenol A in infant urine and baby-food samples among 9- to 15-month-olds. Sci Tot Environ. 2019;697: 133861. https://doi.org/10.1016/j.scitotenv.2019.133861.

    Article  CAS  Google Scholar 

  10. Rebai I, Fernandes JO, Azzouz M, Benmohammed K, Bader G, Benmbarek K, Cunha SC. Urinary bisphenol levels in plastic industry workers. Environ Res. 2021;202: 111666. https://doi.org/10.1016/j.envres.2021.111666.

    Article  CAS  PubMed  Google Scholar 

  11. European Food Safety Authority (EFSA) (2022) Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuff. EFSA panel on food contact materials, enzymes and processing Aids (CEP). EFSA J. 2022. Accessed on June 2022. https://www.efsa.europa.eu/sites/default/files/wgs/food-ingredients-and-packaging/wg-BPA-re-evaluation-m.pdf

  12. European Commission. Commission Regulation (EU) No. 2018/213 attending the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending Regulation (EU) No 10/2011 as regards the use of that substance in plastic food contact materials. Off J Eur Union: L41/6-L41/11. 2018. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0213&from=EN

  13. Rebai I, Fernandes JO, Azzouz M, Benmohammed K, Bader G, Benmbarek K, Cunha SC. Urinary bisfenol levels in plastic industry workers. Environ Res. 2021;202: 111666. https://doi.org/10.1016/j.envres.2021.111666.

    Article  CAS  PubMed  Google Scholar 

  14. Li C, Zhao Y, Chen Y, Wang F, Ah L, Wu X, **ao Q, Deng Y, Li M, Kang L, Lu S. The internal exposure of bisphenol analogues in South China adults and the associated health risks. Sci Tot Environ. 2021;795: 148796. https://doi.org/10.1016/j.scitotenv.2021.148796.

    Article  CAS  Google Scholar 

  15. Baile P, Medina J, Vidal L, Canals A. Determination of four bisphenols in water and urine samples by magnetic dispersive solid-phase extraction using a modified zeolite/iron oxide composite prior to liquid chromatography diode array detection. J Sep Sci. 2020;43:1808–16. https://doi.org/10.1002/jssc.201901022.

    Article  CAS  PubMed  Google Scholar 

  16. Jiao L, Li S, Zhai J, Wang D, Li H, Chi W, Geng X, Du Y. Propylparaben concentrations in the urine of women and adverse effects on ovarian function in mice in vivo and ovarian cells in vitro. J Appl Toxicol. 2021;41:1719–31. https://doi.org/10.1002/jat.4225.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Li G, Zhu Q, Liao C. Occurrence of parabens, triclosan and triclocarban in paired human urine and indoor dust from two typical cities in China and its implications for human exposure. Sci Tot Environ. 2021;786: 147485. https://doi.org/10.1016/j.scitotenv.2021.147485.

    Article  CAS  Google Scholar 

  18. Vindenes HK, Svanes C, Lygre SHL, Gomez Real F, Ringel-Kulka T, Jacobsen Bertelsen R. Exposure to environmental phenols and parabens, and relation to body mass index, eczema and respiratory outcomes in the Norwegian RHINESSA study. Environ Health. 2021;20:81. https://doi.org/10.1186/s12940-021-00767-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arfaeinia H, Ramavandi B, Yousefzadeh S, Dobaradaran S, Ziaei M, Rashidi N, Asadgol Z. Urinary level of un-metabolized parabens in women working in beauty salons. Environ Res. 2021;200: 111771. https://doi.org/10.1016/j.envres.2021.111771.

    Article  CAS  PubMed  Google Scholar 

  20. Dowlatshah S, Saraki M, Fernández-Torres R, Ramos-Payán M. A microfluidic liquid phase microextraction method for drugs and parabens monitoring in human urine. Microchem J. 2021;169: 106577. https://doi.org/10.1016/j.microc.2021.106577.

    Article  CAS  Google Scholar 

  21. Vela-Soria F, Ballesteros O, Zafra-Gómez A, Ballesteros L, Navalón A. UHPLC-MS/MS method for the determination of bisphenol A and its chlorinated derivatives, bisphenol S, parabens, and benzophenones in human urine samples. Anal Bioanal Chem. 2014;406:3773–85. https://doi.org/10.1007/s00216-014-7785-9.

    Article  CAS  PubMed  Google Scholar 

  22. Ye X, Bishop AM, Reidy JA, Needham LL, Calafat AM. Temporal stability of the conjugated species of bisphenol A, parabens, and other environmental phenols in human urine. J Expo Sci Environ Epidemiol. 2007;17:567–72. https://doi.org/10.1038/sj.jes.7500566.

    Article  CAS  PubMed  Google Scholar 

  23. Moscoso-Ruiz I, Gálvez-Ontiveros Y, Cantarero-Malagón S, Rivas A, Zafra-Gómez A. Optimization of an ultrasound-assisted extraction method for the determination of parabens and bisphenol homologues in human saliva by liquid chromatography-tandem mass spectrometry. Microchem J. 2022;175: 107122. https://doi.org/10.1016/j.microc.2021.107122.

    Article  CAS  Google Scholar 

  24. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75(13):3019–30. https://doi.org/10.1021/ac020361s.

    Article  CAS  PubMed  Google Scholar 

  25. ICH Quality Guidelines, Topic Q2 (R1): validation of analytical procedures: text and methodology, 2005. http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Accessed on June 2022.

  26. Gálvez-Ontiveros Y, Moscoso-Ruiz I, Rodrigo L, Aguilera M, Rivas A, Zafra-Gómez A. Presence of parabens and bisphenols in food commonly consumed in Spain. Foods. 2021;10:92. https://doi.org/10.3390/foods10010092.

    Article  CAS  PubMed Central  Google Scholar 

  27. Yang Y, Guan J, Yin J, Shao B, Li H. Urinary levels of bisphenol analogues in residents living near a manufacturing plant in south China. Chemosphere. 2014;112:481–6. https://doi.org/10.1016/j.chemosphere.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  28. Mustieles V, D’Cruz SC, Couderq S, Rodríguez-Carrillo A, Fini JB, Hofer T, Steffensen IL, Dirven H, Barouki R, Olea N, Fernández MF, David A. Bisphenol A and its analogues: a comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. Environ Int. 2020;144: 105811. https://doi.org/10.1016/j.envint.2020.105811.

    Article  CAS  PubMed  Google Scholar 

  29. Li A, Wang F, Tao L, Ma C, Bi L, Song M, Jiang G. Rapid and simultaneous determination of multiple endocrine-disrupting chemicals and their metabolites in human serum and urine samples. Talanta. 2022;248: 123639. https://doi.org/10.1016/j.talanta.2022.123639.

    Article  CAS  PubMed  Google Scholar 

  30. Gálvez-Ontiveros Y, Páez S, Monteagudo C, Rivas A. Endocrine disruptors in food: impact on gut microbiota and metabolic diseases. Nutrients. 2020;12(4):1158. https://doi.org/10.3390/nu12041158.

    Article  CAS  PubMed Central  Google Scholar 

  31. Catenza CJ, Farooq A, Shubear NS, Donkor KK. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere. 2021;268: 129273. https://doi.org/10.1016/j.chemosphere.2020.129273.

    Article  CAS  PubMed  Google Scholar 

  32. Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and reproductive effects of BPA. Curr Neuropharmacol. 2019;17(12):1109–32. https://doi.org/10.2174/1570159X17666190726112101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rochester JR, Bolden AL. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol a substitutes. Environ Health Perspect. 2015;123(7):643–50. https://doi.org/10.1289/ehp.1408989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei F, Mortimer M, Cheng H, Sang N, Guo LH. Parabens as chemicals of emerging concern in the environment and humans: a review. Sci Total Environ. 2021;778: 146150. https://doi.org/10.1016/j.scitotenv.2021.146150.

    Article  CAS  PubMed  Google Scholar 

  35. Pellicer-Castell E, Belenguer-Sapiña C, Amorós P, Haskouri JE, Herrero-Martínez JM, Mauri-Aucejo AR. A β-cyclodextrin sorbent based on hierarchical mesoporous silica for the determination of endocrine-disrupting chemicals in urine samples. J Chromatogr A. 2022;1671: 463007. https://doi.org/10.1016/j.chroma.2022.463007.

    Article  CAS  PubMed  Google Scholar 

  36. Chen HC, Chang JW, Sun YC, Chang WT, Huang PC. Determination of parabens, bisphenol a and its analogues, triclosan, and benzophenone-3 levels in human urine by isotope-dilution-UPLC-MS/MS method followed by supported liquid extraction. Toxics. 2022;10(1):21. https://doi.org/10.3390/toxics10010021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jorvekar SB, Jala A, Borkar RM. Determination of bisphenols and parabens in cow urine distillate from India: implication of human exposure and risk assessment. Environ Sci Pollut Res Int. 2022. https://doi.org/10.1007/s11356-022-19441-2.

    Article  PubMed  Google Scholar 

  38. Bocato MZ, Cesila CA, Lataro BF, de Oliveira A, Campíglia AD, Barbosa Jr F. A fast-multiclass method for the determination of 21 endocrine disruptors in human urine by using vortex-assisted dispersive liquid-liquid microextraction (VADLLME) and LC-MS/MS. Environ Res. 2020;189: 109883. https://doi.org/10.1016/j.envres.2020.109883.

    Article  CAS  PubMed  Google Scholar 

  39. Silveira RS, Rocha BA, Rodrigues JL, Barbosa Jr F. Rapid, sensitive and simultaneous determination of 16 endocrine-disrupting chemicals (parabens, benzophenones, bisphenols, and triclocarban) in human urine based on microextraction by packed sorbent combined with liquid chromatography tandem mass spectrometry (MEPS-LC-MS/MS). Chemosphere. 2020;240: 124951. https://doi.org/10.1016/j.chemosphere.2019.124951.

    Article  CAS  PubMed  Google Scholar 

  40. Sanchis Y, Coscollà C, Yusà V. Analysis of four parabens and bisphenols A, F, S in urine, using dilute and shoot and liquid chromatography coupled to mass spectrometry. Talanta. 2019;202:42–50. https://doi.org/10.1016/j.talanta.2019.04.048.

    Article  CAS  PubMed  Google Scholar 

  41. Rocha BA, de Oliveira A, Barbosa Jr F. A fast and simple air-assisted liquid-liquid microextraction procedure for the simultaneous determination of bisphenols, parabens, benzophenones, triclosan, and triclocarban in human urine by liquid chromatography-tandem mass spectrometry. Talanta. 2018;183:94–101. https://doi.org/10.1016/j.talanta.2018.02.052.

    Article  CAS  PubMed  Google Scholar 

  42. Azzouz A, Rascón AJ, Ballesteros E. Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood and breast milk by continuous solid-phase extraction and gas chromatography-mass spectrometry. J Pharm Biomed Anal. 2016;119:16–26. https://doi.org/10.1016/j.jpba.2015.11.024.

    Article  CAS  PubMed  Google Scholar 

  43. Azzouz A, Rascón AJ, Ballesteros E. Determination of free and conjugated forms of endocrine-disrupting chemicals in human biological fluids by GC-MS. Bioanalysis. 2016;8(11):1145–58. https://doi.org/10.4155/bio-2015-0008.

    Article  CAS  PubMed  Google Scholar 

  44. Ren L, Fang J, Liu G, Zhang J, Zhu Z, Liu H, Lin K, Zhang H, Lu S. Simultaneous determination of urinary parabens, bisphenol A, triclosan, and 8-hydroxy-2’-deoxyguanosine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal Bioanal Chem. 2016;408(10):2621–9. https://doi.org/10.1007/s00216-016-9372-8.

    Article  CAS  PubMed  Google Scholar 

  45. Moos RK, Angerer J, Wittsiepe J, Wilhelm M, Brüning T, Koch HM. Rapid determination of nine parabens and seven other environmental phenols in urine samples of German children and adults. Int J Hyg Environ Health. 2014;217(8):845–53. https://doi.org/10.1016/j.ijheh.2014.06.003.

    Article  CAS  PubMed  Google Scholar 

  46. Vela-Soria F, Ballesteros O, Zafra-Gómez A, Ballesteros L, Navalón A. A multiclass method for the analysis of endocrine disrupting chemicals in human urine samples. Sample treatment by dispersive liquid-liquid microextraction. Talanta. 2014;129:209–18. https://doi.org/10.1016/j.talanta.2014.05.016.

    Article  CAS  PubMed  Google Scholar 

  47. Quigley A, Cummins W, Connolly D. Dispersive liquid-liquid microextraction in the analysis of milk and dairy products: a review. J Chem. 2016;4040165.https://doi.org/10.1155/2016/4040165

  48. Farajzadeh A, Nemati M, Reza M, Mogaddam A. Air-assisted liquid-liquid microextraction; principles and applications with analytical instruments. Trends Anal Chem. 2020;122: 115734. https://doi.org/10.1016/j.trac.2019.115734.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fundación para la Investigación Biosanitaria de Andalucía Oriental – Alejandro Otero (FIBAO) who give the author IMR the possibility to participate in this work.

Funding

The Spanish Ministry of Education, Culture and Sports granted a pre-doctoral fellowship to YGO (FPU19/05989). This work was funded by the Spanish Government, with joint funding from FEDER-ISCIII PI20/01278 and the Andalusia Government-FEDER, projects PE-0250–2019 and P18-RT-4247. The results presented in this work are part from the doctoral thesis of IMR, Analytical Chemistry Doctorate Program of the University of Granada.

Author information

Authors and Affiliations

Authors

Contributions

IMR, investigation, methodology, and writing — original draft. YGO, investigation, methodology, and writing — original draft. MGM, methodology and writing — original draft. MCGR, methodology and writing — original draft. AR, writing — review and editing, supervision, and funding acquisition. AZG, writing — review and editing, supervision, and funding acquisition.

Corresponding author

Correspondence to Alberto Zafra-Gómez.

Ethics declarations

The present study has been approved by the ethics committees of the University of Granada and of the Provincial Biomedical Research of Granada (CEI), Spain. The study has been performed in accordance with the ethical standards. Also, all subjects gave written informed consent and had parental permission to participate.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 213 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moscoso-Ruiz, I., Gálvez-Ontiveros, Y., Giles-Mancilla, M. et al. Improved method for the determination of endocrine-disrupting chemicals in urine of school-age children using microliquid–liquid extraction and UHPLC-MS/MS. Anal Bioanal Chem 414, 6681–6694 (2022). https://doi.org/10.1007/s00216-022-04231-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04231-z

Keywords

Navigation