Log in

Dried blood spots in clinical lipidomics: optimization and recent findings

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Dried blood spots (DBS) are being considered as an alternative sampling method of blood collection that can be used in combination with lipidomic and other omic analysis. DBS are successfully used in the clinical context to collect samples for newborn screening for the measurement of specific fatty acid derivatives, such as acylcarnitines, and lipids from whole blood for diagnostic purposes. However, DBS are scarcely used for lipidomic analysis and investigations. Lipidomic studies using DBS are starting to emerge as a powerful method for sampling and storage in clinical lipidomic analysis, but the major research work is being done in the pre- and analytical steps and procedures, and few in clinical applications. This review presents a description of the impact factors and variables that can affect DBS lipidomic analysis, such as the type of DBS card, haematocrit, homogeneity of the blood drop, matrix/chromatographic effects, and the chemical and physical properties of the analyte. Additionally, a brief overview of lipidomic studies using DBS to unveil their application in clinical scenarios is also presented, considering the studies of method development and validation and, to a less extent, for clinical diagnosis using clinical lipidomics. DBS combined with lipidomic approaches proved to be as effective as whole blood samples, achieving high levels of sensitivity and specificity during MS and MS/MS analysis, which could be a useful tool for biomarker identification. Lipidomic profiling using MS/MS platforms enables significant insights into physiological changes, which could be useful in precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

ACN:

Acetonitrile

BHT:

Butylated hydroxytoluene

CE:

Cholesteryl esters

Chol:

Cholesterol

CH2Cl2 :

Dichloromethane

DBS:

Dried blood spots

DHA:

Docosahexaenoic acid

DI-MS:

Direct injection mass spectrometry

EPA:

Eicosapentaenoic acid

FA:

Fatty acids

GC-FID:

Gas chromatography with flame ionization detection

GC-MS:

Gas chromatography coupled with mass spectrometry

Hct:

Haematocrit

HDL:

High density lipoproteins

HPLC:

High-performance liquid chromatography

IPA:

Isopropyl alcohol

LC-MS:

Liquid chromatography coupled with mass spectrometry

LDL:

Low density lipoprotein

MeOH:

Methanol

MS:

Mass spectrometry

MTBE:

Methyl tert-butyl ether

MS/MS:

Tandem mass spectrometry

P:

Plasmenyl

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PL:

Phospholipids

PS:

Phosphatidylserine

PUFA:

Polyunsaturated fatty acids

RP:

Reverse phase

SFC-MS:

Supercritical fluids chromatography coupled with mass spectrometry

SM:

Sphingomyelins

SPME:

Solid-phase microextraction

TG:

Triacylglycerols

TLC-GC-FID:

Thin layer chromatography followed by gas chromatography with flame ionization detection

References

  1. Wagner M, Tonoli D, Varesio E, Hopfgartner G. The use of mass spectrometry to analyze dried blood spots. Mass Spectrom Rev. 2016;35:361–438. https://doi.org/10.1002/mas.21441.

    Article  CAS  PubMed  Google Scholar 

  2. Rottinghaus EK, Beard RS, Bile E, Modukanele M, Maru** M, Mine M, Nkengasong J, Yang C. Evaluation of dried blood spots collected on filter papers from three manufacturers stored at ambient temperature for application in HIV-1 drug resistance monitoring. PLoS One. 2014;9:e109060. https://doi.org/10.1371/journal.pone.0109060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Konig S, Yildiz O, Hermann N, Steurer A, Singrasa M, Dobelin W. A novel concept for sample collection and sample preparation. Int J Pharm Sci Rev Res. 2012;15:90–4.

    Google Scholar 

  4. Rus C-M, Di Bucchianico S, Cozma C, Zimmermann R, Bauer P. Dried blood spot (DBS) methodology study for biomarker discovery in lysosomal storage disease (LSD). Metabolites. 2021;11:382. https://doi.org/10.3390/metabo11060382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li K, Naviaux JC, Monk JM, Wang L, Naviaux RK. Improved dried blood spot-based metabolomics: a targeted, broad-spectrum, single-injection method. Metabolites. 2020;10:82. https://doi.org/10.3390/metabo10030082.

    Article  CAS  PubMed Central  Google Scholar 

  6. Nakajima D, Ohara O, Kawashima Y. Toward proteome-wide exploration of proteins in dried blood spots using liquid chromatography-coupled mass spectrometry. Proteomics. 2021;21:2100019. https://doi.org/10.1002/pmic.202100019.

    Article  CAS  Google Scholar 

  7. Dhingra N, Diepart M, Dziekan G, Khamassi S, Otaiza F, Wilburn S (2010) WHO guidelines on drawing blood: best practices in phlebotomy. World Health Organization, https://www.euro.who.int/__data/assets/pdf_file/0005/268790/WHO-guidelines-on-drawing-blood-best-practices-in-phlebotomy-Eng.pdf. Accessed 14 June 2022

  8. Malsagova K, Kopylov A, Stepanov A, Butkova T, Izotov A, Kaysheva A. Dried blood spot in laboratory: directions and prospects. Diagnostics. 2020;10:248. https://doi.org/10.3390/diagnostics10040248.

    Article  PubMed Central  Google Scholar 

  9. Lima-Oliveira G, Lippi G, Salvagno GL, Picheth G, Guidi GC. Laboratory Diagnostics and Quality of Blood Collection/Laboratorijska Dijagnostika I Kvalitet Uzimanja Uzoraka Krvi. J Med Biochem. 2015;34:288–94. https://doi.org/10.2478/jomb-2014-0043.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lim MD. Dried blood spots for global health diagnostics and surveillance: opportunities and challenges. Am J Trop Med Hyg. 2018;99:256–65. https://doi.org/10.4269/ajtmh.17-0889.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Burnett JE. Dried blood spot sampling: practical considerations and recommendation for use with preclinical studies. Bioanalysis. 2011;3:1099–107.

    Article  CAS  Google Scholar 

  12. Lv J, Zhang L, Yan F, Wang X. Clinical lipidomics: a new way to diagnose human diseases. Clin Transl Med. 2018;7:10–2. https://doi.org/10.1186/s40169-018-0190-9.

    Article  Google Scholar 

  13. Gao F, McDaniel J, Chen EY, Rockwell HE, Drolet J, Vishnudas VK, Tolstikov V, Sarangarajan R, Narain NR, Kiebish MA. Dynamic and temporal assessment of human dried blood spot MS/MSALL shotgun lipidomics analysis. Nutr Metab (Lond). 2017;14:28. https://doi.org/10.1186/s12986-017-0182-6.

    Article  CAS  Google Scholar 

  14. Wilson I. Global metabolic profiling (metabonomics/metabolomics) using dried blood spots: advantages and pitfalls. Bioanalysis. 2011;3:2255–7. https://doi.org/10.4155/bio.11.221.

    Article  CAS  PubMed  Google Scholar 

  15. Ismaiel OA, Jenkins RG, Thomas Karnes H. Investigation of endogenous blood lipids components that contribute to matrix effects in dried blood spot samples by liquid chromatography-tandem mass spectrometry. Drug Test Anal. 2013;5:710–5. https://doi.org/10.1002/dta.1421.

    Article  CAS  PubMed  Google Scholar 

  16. Furse S, Koulman A. Lipid extraction from dried blood spots and dried milk spots for untargeted high throughput lipidomics. Mol Omi. 2020;16:563–72. https://doi.org/10.1039/d0mo00102c.

    Article  CAS  Google Scholar 

  17. Primassin S, Spiekerkoetter U. ESI-MS/MS measurement of free carnitine and its precursor γ-butyrobetaine in plasma and dried blood spots from patients with organic acidurias and fatty acid oxidation disorders. Mol Genet Metab. 2010;101:141–5. https://doi.org/10.1016/j.ymgme.2010.06.012.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Thihli K, Sinclair G, Sirrs S, Mezei M, Nelson J, Vallance H. Performance of serum and dried blood spot acylcarnitine profiles for detection of fatty acid β-oxidation disorders in adult patients with rhabdomyolysis. J Inherit Metab Dis. 2014;37:207–13. https://doi.org/10.1007/s10545-012-9578-7.

    Article  CAS  PubMed  Google Scholar 

  19. Snowden SG, Korosi A, de Rooij SR, Koulman A. Combining lipidomics and machine learning to measure clinical lipids in dried blood spots. Metabolomics. 2020;16:83. https://doi.org/10.1007/s11306-020-01703-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Di Marino C, De Marco A, Pisanti A, Romanucci V. Effects of dried blood spot storage on lipidomic analysis. Molecules. 2018;23:403. https://doi.org/10.3390/molecules23020403.

    Article  CAS  PubMed Central  Google Scholar 

  21. Metherel AH, Hogg RC, Buzikievich LM, Stark KD. Butylated hydroxytoluene can protect polyunsaturated fatty acids in dried blood spots from degradation for up to 8 weeks at room temperature. Lipids Health Dis. 2013;12:22. https://doi.org/10.1186/1476-511X-12-22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luginbühl M, Schröck A, König S, Schürch S, Weinmann W. Determination of fatty acid ethyl esters in dried blood spots by LC–MS/MS as markers for ethanol intake: application in a drinking study. Anal Bioanal Chem. 2016;408:3503–9. https://doi.org/10.1007/s00216-016-9426-y.

    Article  CAS  PubMed  Google Scholar 

  23. Liu G, Mühlhäusler BS, Gibson RA. A method for long term stabilisation of long chain polyunsaturated fatty acids in dried blood spots and its clinical application. Prostaglandins, Leukot Essent Fat Acids. 2014;91:251–60. https://doi.org/10.1016/j.plefa.2014.09.009.

    Article  CAS  Google Scholar 

  24. Koulman A, Prentice P, Wong MCY, Matthews L, Bond NJ, Eiden M, Griffin JL, Dunger DB. The development and validation of a fast and robust dried blood spot based lipid profiling method to study infant metabolism. Metabolomics. 2014;10:1018–25. https://doi.org/10.1007/s11306-014-0628-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Drzymała-Czyż S, Janich S, Klingler M, Demmelmair J, Walkowiak J, Koletzko B. Whole blood glycerophospholipids in dried blood spots — a reliable marker for the fatty acid status. Chem Phys Lipids. 2017;207:1–9. https://doi.org/10.1016/j.chemphyslip.2017.06.003.

    Article  CAS  PubMed  Google Scholar 

  26. Hewawasam E, Liu G, Jeffery DW, Muhlhausler BS, Gibson RA. A validated method for analyzing polyunsaturated free fatty acids from dried blood spots using LC–MS/MS. Prostaglandins, Leukot Essent Fat Acids. 2017;125:1–7. https://doi.org/10.1016/j.plefa.2017.08.010.

    Article  CAS  Google Scholar 

  27. Liao HW, Lin SW, Lin YT, Lee CH, Kuo CH. Identification of potential sphingomyelin markers for the estimation of hematocrit in dried blood spots via a lipidomic strategy. Anal Chim Acta. 2018;1003:34–41. https://doi.org/10.1016/j.aca.2017.11.041.

    Article  CAS  PubMed  Google Scholar 

  28. Aristizabal Henao JJ, Metherel AH, Smith RW, Stark KD. Tailored extraction procedure is required to ensure recovery of the main lipid classes in whole blood when profiling the lipidome of dried blood spots. Anal Chem. 2016;88:9391–6. https://doi.org/10.1021/acs.analchem.6b03030.

    Article  CAS  PubMed  Google Scholar 

  29. Gunash J, Aristizabal-Henao JJ, Stark KD. Quantitating fatty acids in dried blood spots on a common collection card versus a novel wicking sampling device. Prostaglandins, Leukot Essent Fat Acids. 2019;145:1–6. https://doi.org/10.1016/j.plefa.2019.05.002.

    Article  CAS  Google Scholar 

  30. Li W, Zhang J, Tse FLS. Strategies in quantitative LC-MS/MS analysis of unstable small molecules in biological matrices. Biomed Chromatogr. 2011;25:258–77. https://doi.org/10.1002/bmc.1572.

    Article  CAS  PubMed  Google Scholar 

  31. Grüner N, Stambouli O, Ross RS. Dried blood spots—preparing and processing for use in immunoassays and in molecular techniques. J Vis Exp. 2015;13:52619. https://doi.org/10.3791/52619.

    Article  CAS  Google Scholar 

  32. Ho NT, Busik JV, Resau JH, Paneth N, Khoo SK. Effect of storage time on gene expression data acquired from unfrozen archived newborn blood spots. Mol Genet Metab. 2016;119:207–13. https://doi.org/10.1016/j.ymgme.2016.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pupillo D, Simonato M, Cogo PE, Lapillonne A, Carnielli VP. Short-term stability of whole blood polyunsaturated fatty acid content on filter paper during storage at −28 °C. Lipids. 2016;51:193–8. https://doi.org/10.1007/s11745-015-4111-z.

    Article  CAS  PubMed  Google Scholar 

  34. Han J, Higgins R, Lim MD, Lin K, Yang J, Borchers CH. Short-term stabilities of 21 amino acids in dried blood spots. Clin Chem. 2018;64:400–2. https://doi.org/10.1373/clinchem.2017.278457.

    Article  CAS  PubMed  Google Scholar 

  35. Chuang WL, Pacheco J, Cooper S, McGovern MM, Cox GF, Keutzer J, Zhang XK. Lyso-sphingomyelin is elevated in dried blood spots of Niemann-Pick B patients. Mol Genet Metab. 2014;111:209–11. https://doi.org/10.1016/j.ymgme.2013.11.012.

    Article  CAS  PubMed  Google Scholar 

  36. Mashavave G, Kuona P, Tinago W, Stray-Pedersen B, Munjoma M, Musarurwa C. Dried blood spot omega-3 and omega-6 long chain polyunsaturated fatty acid levels in 7–9 year old Zimbabwean children: a cross sectional study. BMC Clin Pathol. 2016;16:14. https://doi.org/10.1186/s12907-016-0035-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Le Faouder P, Soullier J, Tremblay-Franco M, Tournadre A, Martin J-F, Guitton Y, Carlé C, Caspar-Bauguil S, Denechaud P-D, Bertrand-Michel J. Untargeted lipidomic profiling of dry blood spots using SFC-HRMS. Metabolites. 2021;11:305. https://doi.org/10.3390/metabo11050305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kimura M, Yoon HR, Wasant P, Takahashi Y, Yamaguchi S. A sensitive and simplified method to analyze free fatty acids in children with mitochondrial beta oxidation disorders using gas chromatography/mass spectrometry and dried blood spots. Clin Chim Acta. 2002;316:117–21. https://doi.org/10.1016/S0009-8981(01)00741-0.

    Article  CAS  PubMed  Google Scholar 

  39. Kyle JE, Casey CP, Stratton KG, Zink EM, Kim Y, Zheng X, Monroe ME, Weitz KK, Bloodsworth KJ, Orton DJ, Ibrahim YM, Moore RJ, Lee CG, Pedersen C, Orwoll E, Smith RD, Burnum-Johnson KE, Baker ES. Comparing identified and statistically significant lipids and polar metabolites in 15-year old serum and dried blood spot samples for longitudinal studies. Rapid Commun Mass Spectrom. 2017;31:447–56. https://doi.org/10.1002/rcm.7808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu G, Patrone L, Snapp HM, Batog A, Valentine J, Cosma G, Tymiak A, Ji QC, Arnold ME. Evaluating and defining sample preparation procedures for DBS LC–MS/MS assays. Bioanalysis. 2010;2:1405–14. https://doi.org/10.4155/bio.10.106.

    Article  CAS  PubMed  Google Scholar 

  41. Clark GT, Haynes JJ. Utilization of DBS within drug discovery: a simple 2D-LC–MS/MS system to minimize blood- and paper-based matrix effects from FTA elute™ DBS. Bioanalysis. 2011;3:1253–70. https://doi.org/10.4155/bio.11.81.

    Article  CAS  PubMed  Google Scholar 

  42. Ismaiel OA, Zhang T, Jenkins RG, Karnes HT. Investigation of endogenous blood plasma phospholipids, cholesterol and glycerides that contribute to matrix effects in bioanalysis by liquid chromatography/mass spectrometry. J Chromatogr B. 2010;878:3303–16. https://doi.org/10.1016/j.jchromb.2010.10.012.

    Article  CAS  Google Scholar 

  43. Gurtovenko AA, Mukhamadiarov EI, Kostritskii AY, Karttunen M. Phospholipid–cellulose interactions: insight from atomistic computer simulations for understanding the impact of cellulose-based materials on plasma membranes. J Phys Chem B. 2018;122:9973–81. https://doi.org/10.1021/acs.jpcb.8b07765.

    Article  CAS  PubMed  Google Scholar 

  44. Kostritskii AY, Tolmachev DA, Lukasheva NV, Gurtovenko AA. Molecular-level insight into the interaction of phospholipid bilayers with cellulose. Langmuir. 2017;33:12793–803. https://doi.org/10.1021/acs.langmuir.7b02297.

    Article  CAS  PubMed  Google Scholar 

  45. Skjærvø Ø, Solbakk EJ, Halvorsen TG, Reubsaet L. Paper-based immunocapture for targeted protein analysis. Talanta. 2019;195:764–70. https://doi.org/10.1016/j.talanta.2018.12.013.

    Article  CAS  PubMed  Google Scholar 

  46. McCann L, Benavidez TE, Holtsclaw S, Garcia CD. Addressing the distribution of proteins spotted on μPADs. Analyst. 2017;142:3899–905. https://doi.org/10.1039/C7AN00849J.

    Article  CAS  PubMed  Google Scholar 

  47. Cobb Z, de Vries R, Spooner N, Williams S, Staelens L, Doig M, Broadhurst R, Barfield M, van de Merbel N, Schmid B, Siethoff C, Ortiz J, Verheij E, van Baar B, White S, Timmerman P. In-depth study of homogeneity in DBS using two different techniques: results from the EBF DBS-microsampling consortium. Bioanalysis. 2013;5:2161–9. https://doi.org/10.4155/bio.13.171.

    Article  CAS  PubMed  Google Scholar 

  48. Stickle DF, Rawlinson NJ, Landmark JD. Increased perimeter red cell concentration in filter paper bloodspot samples is consistent with constant-load size exclusion chromatography occurring during application. Clin Chim Acta. 2009;401:42–5. https://doi.org/10.1016/j.cca.2008.11.011.

    Article  CAS  PubMed  Google Scholar 

  49. Kvaskoff D, Ko P, Simila HA, Eyles DW. Distribution of 25-hydroxyvitamin D3 in dried blood spots and implications for its quantitation by tandem mass spectrometry. J Chromatogr B. 2012;901:47–52. https://doi.org/10.1016/j.jchromb.2012.05.040.

    Article  CAS  Google Scholar 

  50. Hall E, Flores S, De Jesús V. Influence of hematocrit and total-spot volume on performance characteristics of dried blood spots for newborn screening. Int J Neonatal Screen. 2015;1:69–78. https://doi.org/10.3390/ijns1020069.

    Article  PubMed  Google Scholar 

  51. De Kesel PM, Sadones N, Capiau S, Lambert WE, Stove CP. Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis. 2013;5:2023–41. https://doi.org/10.4155/bio.13.156.

    Article  CAS  PubMed  Google Scholar 

  52. Chao TC, Trybala A, Starov V, Das DB. Influence of haematocrit level on the kinetics of blood spreading on thin porous medium during dried blood spot sampling. Colloids Surf A Physicochem Eng Asp. 2014;451:38–47. https://doi.org/10.1016/j.colsurfa.2014.03.033.

    Article  CAS  Google Scholar 

  53. Youhnovski N, Bergeron A, Furtado M, Garofolo F. Pre-cut dried blood spot (PCDBS): an alternative to dried blood spot (DBS) technique to overcome hematocrit impact. Rapid Commun Mass Spectrom. 2011;25:2951–8. https://doi.org/10.1002/rcm.5182.

    Article  CAS  PubMed  Google Scholar 

  54. Li F, Ploch S, Fast D, Michael S. Perforated dried blood spot accurate microsampling: the concept and its applications in toxicokinetic sample collection. J Mass Spectrom. 2012;47:655–67. https://doi.org/10.1002/jms.3015.

    Article  CAS  PubMed  Google Scholar 

  55. Ren X, Paehler T, Zimmer M, Guo Z, Zane P, Emmons GT. Impact of various factors on radioactivity distribution in different DBS papers. Bioanalysis. 2010;2:1469–75. https://doi.org/10.4155/bio.10.96.

    Article  CAS  PubMed  Google Scholar 

  56. Trufelli H, Palma P, Famiglini G, Cappiello A. An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrom Rev. 2011;30:491–509. https://doi.org/10.1002/mas.20298.

    Article  CAS  PubMed  Google Scholar 

  57. Marsh D. Handbook of lipids bilayers. 2nd ed. Boca Raton, FL, USA: CRC Press; 2013.

    Book  Google Scholar 

  58. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7. https://doi.org/10.1139/o59-099.

    Article  CAS  PubMed  Google Scholar 

  59. Eggers LF, Schwudke D (2016) Liquid extraction: Folch. Encycl Lipidomics 1–6https://doi.org/10.1007/978-94-007-7864-1_89-1

  60. Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem. 2003;49:1797–817. https://doi.org/10.1373/clinchem.2003.022178.

    Article  CAS  PubMed  Google Scholar 

  61. O’Donnell VB, Ekroos K, Liebisch G, Wakelam M. Lipidomics: current state of the art in a fast moving field. WIREs Syst Biol Med. 2020;12:e1466. https://doi.org/10.1002/wsbm.1466.

    Article  Google Scholar 

  62. Züllig T, Trötzmüller M, Köfeler HC. Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem. 2020;412:2191–209. https://doi.org/10.1007/s00216-019-02241-y.

    Article  CAS  PubMed  Google Scholar 

  63. Alves MA, Lamichhane S, Dickens A, McGlinchey A, Ribeiro HC, Sen P, Wei F, Hyötyläinen T, Orešič M. Systems biology approaches to study lipidomes in health and disease. Biochim Biophys Acta - Mol Cell Biol Lipids. 2021;1866:158857. https://doi.org/10.1016/j.bbalip.2020.158857.

    Article  CAS  PubMed  Google Scholar 

  64. Domingues P, García A, Skrzydlewska E (2018) Advanced analytical chemistry for life sciences. AACLifeSci, https://www.umb.edu.pl/photo/pliki/projekty_umb/aac/aaclifesci_-_manual.pdf. Accessed 14 June 2022

  65. Li A, Hines KM, Xu L. Lipidomics by HILIC-ion mobility-mass spectrometry. Methods Mol Biol. 2020;2084:119–32. https://doi.org/10.1007/978-1-0716-0030-6_7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Laboureur L, Ollero M, Touboul D. Lipidomics by supercritical fluid chromatography. Int J Mol Sci. 2015;16:13868–84. https://doi.org/10.3390/ijms160613868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Sain-van der Velden MGM, Diekman EF, Jans JJ, van der Ham M, Prinsen BHCMT, Visser G, Verhoeven-Duif NM (2013) Differences between acylcarnitine profiles in plasma and bloodspots. Mol Genet Metab 110:116–121.https://doi.org/10.1016/j.ymgme.2013.04.008.

  68. Gordon Bell J, Mackinlay EE, Dick JR, Younger I, Lands B, Gilhooly T. Using a fingertip whole blood sample for rapid fatty acid measurement: method validation and correlation with erythrocyte polar lipid compositions in UK subjects. Br J Nutr. 2011;106:1408–15. https://doi.org/10.1017/S0007114511001978.

    Article  CAS  PubMed  Google Scholar 

  69. Mohammed BS, Cameron GA, Cameron L, Hawksworth GH, Helms PJ, McLay JS. Can finger-prick sampling replace venous sampling to determine the pharmacokinetic profile of oral paracetamol? Br J Clin Pharmacol. 2010;70:52–6. https://doi.org/10.1111/j.1365-2125.2010.03668.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks are due for the financial support to the University of Aveiro and FCT/MCT for the financial support to research units CESAM (UIDB/50017/2020, UIDP/50017/2020 & LA/P/0094/2020), LAQV-REQUIMTE (UIDB/50006/2020), and CICECO-Aveiro Institute of Materials (UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020), and to RNEM, Portuguese Mass Spectrometry Network (LISBOA-01-0145-FEDER-402-022125) through national funds and, where applicable, co-financed by the FEDER, within the PT2020. Helena Beatriz Ferreira is grateful to FCT for her PhD Grant (2020.04611.BD). Inês M. S. Guerra is grateful to FCT for her PhD Grant (2021.04754.BD). Ana S. P. Moreira thanks the contract in the scope of the project ‘Coccolitho4BioMat’ (POCI-01-0145-FEDER-031032). Tânia Melo thanks the Junior Researcher contract in the scope of the Individual Call to Scientific Employment Stimulus 2020 (CEECIND/01578/2020). The authors are thankful to the COST Action EpiLipidNET, CA19105-Pan-European Network in Lipidomics and EpiLipidomics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helena Beatriz Ferreira or M. Rosário Domingues.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, H.B., Guerra, I.M.S., Melo, T. et al. Dried blood spots in clinical lipidomics: optimization and recent findings. Anal Bioanal Chem 414, 7085–7101 (2022). https://doi.org/10.1007/s00216-022-04221-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04221-1

Keywords

Navigation