Log in

Insight on the microscopic binding mechanism of bisphenol compounds (BPs) with transthyretin (TTR) based on multi-spectroscopic methods and computational simulations

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Thyroid hormones are involved in numerous physiological processes as regulators of metabolism, regulating organ growth, and mental state. Bisphenol compounds (BPs) are recognized as chemicals that interfere with endocrine balance. Because BPs have a similar structure to thyroxine, they can compete for binding to thyroid protein and disrupt the normal physiological activity of the thyroid system. In this study, three typical bisphenol compounds were selected to explore the interaction between BPs and TTR by computer simulations and multi-spectroscopic methods. The results revealed that BPs quenched the endogenous fluorescence of TTR via the combination of static quenching and non-radiative energy transfer, and the van der Waals forces and hydrogen bonding played a synergistic role in the binding process of BPs and TTR. Furthermore, the three-dimensional fluorescence spectroscopy, UV–vis spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy, which were employed to determine the conformation of protein, revealed that binding of BPs with TTR could induce conformational changes in TTR. In addition, the binding sites and the residues surrounding the BPs within the TTR were determined through molecular docking and molecular dynamics simulation. Therefore, this work provides new insights into the interaction between BPs and TTR to evaluate the potential toxicity of BPs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Murk AJ, Rijntjes E, Blaauboer BJ, Clewell R, Crofton KM, Dingemans MML, Furlow JD, Kavlock R, Kohrle J, Opitz R, Traas T, Visser TJ, **a MH, Gutleb AC. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicol in Vitro. 2013;27(4):1320–46. https://doi.org/10.1016/j.tiv.2013.02.012.

    Article  CAS  PubMed  Google Scholar 

  2. Ren XM, Guo LH. Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe. Environ Sci Technol. 2012;46(8):4633–40. https://doi.org/10.1021/es2046074.

    Article  CAS  PubMed  Google Scholar 

  3. Gong LY, Zhu L, Wang SZ, Zhang ZZ. Transthyretin regulates the migration and invasion of JEG-3 cells. Oncol Lett. 2017;13(3):1242–6. https://doi.org/10.3892/ol.2016.5545.

    Article  CAS  PubMed  Google Scholar 

  4. Benson MD, Yazaki M, Magy N. Laboratory assessment of transthyretin amyloidosis. Clin Chem Lab Med. 2002;40(12):1262–5. https://doi.org/10.1515/Cclm.2002.218.

    Article  CAS  PubMed  Google Scholar 

  5. Yue SQ, Yu J, Kong Y, Chen HF, Mao MF, Ji CY, Shao S, Zhu JQ, Gu JP, Zhao MR. Metabolomic modulations of HepG2 cells exposed to bisphenol analogues. Environ Int. 2019;129:59–67. https://doi.org/10.1016/j.envint.2019.05.008.

    Article  CAS  PubMed  Google Scholar 

  6. El Moussawi SN, Ouaini R, Matta J, Chebib H, Cladiere M, Camel V. Simultaneous migration of bisphenol compounds and trace metals in canned vegetable food. Food Chem. 2019;288:228–38. https://doi.org/10.1016/j.foodchem.2019.02.116.

    Article  CAS  Google Scholar 

  7. Cacho JI, Campillo N, Vinas P, Hernandez-Cordoba M. In situ ionic liquid dispersive liquid-liquid microextraction and direct microvial insert thermal desorption for gas chromatographic determination of bisphenol compounds. Anal Bioanal Chem. 2016;408(1):243–9. https://doi.org/10.1007/s00216-015-9098-z.

    Article  CAS  PubMed  Google Scholar 

  8. Maffini MV, Rubin BS, Sonnenschein C, Soto AM. Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol. 2006;254:179–86. https://doi.org/10.1016/j.mce.2006.04.033.

    Article  CAS  PubMed  Google Scholar 

  9. Huang M, Liu S, Fu L, Jiang X, Yang M. Bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF induce oxidative stress and biomacromolecular damage in human granulosa KGN cells. Chemosphere. 2020;253:126707. https://doi.org/10.1016/j.chemosphere.2020.126707.

    Article  CAS  PubMed  Google Scholar 

  10. Cao J, Guo LH, Wan B, Wei Y. In vitro fluorescence displacement investigation of thyroxine transport disruption by bisphenol A. J Environ Sci-China. 2011;23(2):315–21. https://doi.org/10.1016/S1001-0742(10)60408-1.

    Article  CAS  PubMed  Google Scholar 

  11. Fic A, Zegura B, Gramec D, Masic LP. Estrogenic and androgenic activities of TBBA and TBMEPH, metabolites of novel brominated flame retardants, and selected bisphenols, using the XenoScreen XL YES/YAS assay. Chemosphere. 2014;112:362–9. https://doi.org/10.1016/j.chemosphere.2014.04.080.

    Article  CAS  PubMed  Google Scholar 

  12. Zoller O, Bruschweiler BJ, Magnin R, Reinhard H, Rhyn P, Rupp H, Zeltner S, Felleisen R. Natural occurrence of bisphenol F in mustard. Food Addit Contam A. 2016;33(1):137–46. https://doi.org/10.1080/19440049.2015.1110623.

    Article  CAS  Google Scholar 

  13. Karrer C, de Boer W, Delmaar C, Cai YP, Crepet A, Hungerbuhler K, von Goetz N. Linking probabilistic exposure and pharmacokinetic modeling to assess the cumulative risk from the bisphenols BPA, BPS, BPF, and BPAF for Europeans. Environ Sci Technol. 2019;53(15):9181–91. https://doi.org/10.1021/acs.est.9b01749.

    Article  CAS  PubMed  Google Scholar 

  14. Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocr Metab. 2002;87(11):5185–90. https://doi.org/10.1210/jc.2002-020209.

    Article  CAS  PubMed  Google Scholar 

  15. Yamauchi K, Ishihara A, Fukazawa H, Terao Y. Competitive interactions of chlorinated phenol compounds with 3,3′,5-triiodothyronine binding to transthyretin: detection of possible thyroid-disrupting chemicals in environmental waste water. Toxicol Appl Pharmacol. 2003;187(2):110–7. https://doi.org/10.1016/S0041-008X(02)00045-5.

    Article  CAS  PubMed  Google Scholar 

  16. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19(14):1639–62. https://doi.org/10.1002/(Sici)1096-987x(19981115)19:14<1639::Aid-Jcc10>3.0.Co;2-B.

    Article  CAS  Google Scholar 

  17. Qin WP, Li CH, Guo LH, Ren XM, Zhang JQ. Binding and activity of polybrominated diphenyl ether sulfates to thyroid hormone transport proteins and nuclear receptors. Environ Sci-Proc Imp. 2019;21(6):950–6. https://doi.org/10.1039/c9em00095j.

    Article  CAS  Google Scholar 

  18. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–18. https://doi.org/10.1002/jcc.20291.

    Article  CAS  Google Scholar 

  19. Schuttelkopf AW, van Aalten DMF. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D. 2004;60:1355–63. https://doi.org/10.1107/S0907444904011679.

    Article  CAS  PubMed  Google Scholar 

  20. Swanson JMJ, Henchman RH, McCammon JA. Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys J. 2004;86(1):67–74. https://doi.org/10.1016/S0006-3495(04)74084-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumari R, Kumar R, Lynn A. g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inform Model. 2014;54(7):1951–62. https://doi.org/10.1021/ci500020m.

    Article  CAS  Google Scholar 

  22. Wang Q, Huang CR, Jiang M, Zhu YY, Wang J, Chen J, Shi JH. Binding interaction of atorvastatin with bovine serum albumin: spectroscopic methods and molecular docking. Spectrochim Acta A. 2016;156:155–63. https://doi.org/10.1016/j.saa.2015.12.003.

    Article  CAS  Google Scholar 

  23. Tayyab S, Min LH, Kabir MZ, Kandandapani S, Ridzwan NFW, Mohamad SB. Exploring the interaction mechanism of a dicarboxamide fungicide, iprodione with bovine serum albumin. Chem Pap. 2020;74(5):1633–46. https://doi.org/10.1007/s11696-019-01015-1.

    Article  CAS  Google Scholar 

  24. Zhu M, Wang L, Wang Y, Zhou J, Ding J, Li W, **n Y, Fan S, Wang Z, Wang Y. Biointeractions of herbicide atrazine with human serum albumin: UV-vis, fluorescence and circular dichroism approaches. Int J Environ Res Public Health. 2018;15(1):116. https://doi.org/10.3390/ijerph15010116.

    Article  CAS  PubMed Central  Google Scholar 

  25. Wahba MEK, El-Enany N, Belal F. Application of the Stern-Volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations. Anal Methods-Uk. 2015;7(24):10445–51. https://doi.org/10.1039/c3ay42093k.

    Article  CAS  Google Scholar 

  26. Gan N, Sun QM, Zhang M, Tang PX, Zhao LD, **e TH, Zhang YK, Li H. Insights into the interaction of ulipristal acetate and human serum albumin using multi-spectroscopic methods, molecular docking, and dynamic simulation. J Biomol Struct Dyn. 2019;37(11):2989–98. https://doi.org/10.1080/07391102.2018.1502686.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang YF, Zhou KL, Lou YY, Pan DQ, Shi JH. Investigation of the binding interaction between estazolam and bovine serum albumin: multi-spectroscopic methods and molecular docking technique. J Biomol Struct Dyn. 2017;35(16):3605–14. https://doi.org/10.1080/07391102.2016.1264889.

    Article  CAS  PubMed  Google Scholar 

  28. Wang BL, Pan DQ, Zhou KL, Lou YY, Shi JH. Multi-spectroscopic approaches and molecular simulation research of the intermolecular interaction between the angiotensin-converting enzyme inhibitor (ACE inhibitor) benazepril and bovine serum albumin (BSA). Spectrochim Acta A. 2019;212:15–24. https://doi.org/10.1016/j.saa.2018.12.040.

    Article  CAS  Google Scholar 

  29. Zohoorian-Abootorabi T, Sanee H, Iranfar H, Saberi MR, Chamani J. Separate and simultaneous binding effects through a non-cooperative behavior between cyclophosphamide hydrochloride and fluoxymesterone upon interaction with human serum albumin: multi-spectroscopic and molecular modeling approaches. Spectrochim Acta A. 2012;88:177–91. https://doi.org/10.1016/j.saa.2011.12.026.

    Article  CAS  Google Scholar 

  30. Ojha H, Mishra K, Hassan MI, Chaudhury NK. Spectroscopic and isothermal titration calorimetry studies of binding interaction of ferulic acid with bovine serum albumin. Thermochim Acta. 2012;548:56–64. https://doi.org/10.1016/j.tca.2012.08.016.

    Article  CAS  Google Scholar 

  31. Lyu SL, Wang W. Spectroscopic methodologies and computational simulation studies on the characterization of the interaction between human serum albumin and astragalin. J Biomol Struct Dyn. 2021;39(8):2959–70. https://doi.org/10.1080/07391102.2020.1758213.

    Article  CAS  PubMed  Google Scholar 

  32. Pinto MD, Duque AL, Macias P. Fluorescence quenching study on the interaction between quercetin and lipoxygenase. J Fluoresc. 2011;21(3):1311–8. https://doi.org/10.1007/s10895-010-0816-9.

    Article  CAS  Google Scholar 

  33. Ross PD, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981;20(11):3096–102. https://doi.org/10.1021/bi00514a017.

    Article  CAS  PubMed  Google Scholar 

  34. Markarian SA, Aznauryan MG. Study on the interaction between isoniazid and bovine serum albumin by fluorescence spectroscopy: the effect of dimethylsulfoxide. Mol Biol Rep. 2012;39(7):7559–67. https://doi.org/10.1007/s11033-012-1590-3.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Wang LJ, Zhu MQ, Xue JY, Hua RM, Li QX. Comparative studies on biophysical interactions between gambogic acid and serum albumin via multispectroscopic approaches and molecular docking. J Lumin. 2019;205:210–8. https://doi.org/10.1016/j.jlumin.2018.09.005.

    Article  CAS  Google Scholar 

  36. Ran DH, Wu X, Zheng JH, Yang JH, Zhou HP, Zhang MF, Tang YJ. Study on the interaction between florasulam and bovine serum albumin. J Fluoresc. 2007;17(6):721–6. https://doi.org/10.1007/s10895-007-0226-9.

    Article  CAS  PubMed  Google Scholar 

  37. Omidvar Z, Parivar K, Sanee H, Amiri-Tehranizadeh Z, Baratian A, Saberi MR, Asoodeh A, Chamani J. Investigations with spectroscopy, zeta potential and molecular modeling of the non-cooperative behaviour between cyclophosphamide hydrochloride and aspirin upon interaction with human serum albumin: binary and ternary systems from the view point of multi-drug therapy. J Biomol Struct Dyn. 2011;29(1):181–206. https://doi.org/10.1080/07391102.2011.10507382.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang GW, Que QM, Pan JH, Guo JB. Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J Mol Struct. 2008;881(1-3):132–8. https://doi.org/10.1016/j.molstruc.2007.09.002.

    Article  CAS  Google Scholar 

  39. Mehranfar F, Bordbar AK, Fani N, Keyhanfar M. Binding analysis for interaction of diacetylcurcumin with beta-casein nanoparticles by using fluorescence spectroscopy and molecular docking calculations. Spectrochim Acta A. 2013;115:629–35. https://doi.org/10.1016/j.saa.2013.06.062.

    Article  CAS  Google Scholar 

  40. Zhao Z, Shi T, Chu Y, Cao Y, Cheng S, Na R, Wang Y. Comparison of the interactions of flupyrimin and nitenpyram with serum albumins via multiple analysis methods. Chemosphere. 2022;289:133139. https://doi.org/10.1016/j.chemosphere.2021.133139.

    Article  CAS  PubMed  Google Scholar 

  41. Tian ZY, Zang FL, Luo W, Zhao ZH, Wang YG, Xu XJ, Wang CJ. Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA). J Photoch Photobio B. 2015;142:103–9. https://doi.org/10.1016/j.jphotobiol.2014.10.013.

    Article  CAS  Google Scholar 

  42. Wang L, Wu X, Yang Y, Liu X, Zhu M, Fan S, Wang Z, Xue J, Hua R, Wang Y, Li QX. Multi-spectroscopic measurements, molecular modeling and density functional theory calculations for interactions of 2,7-dibromocarbazole and 3,6-dibromocarbazole with serum albumin. Sci Total Environ. 2019;686:1039–48. https://doi.org/10.1016/j.scitotenv.2019.06.001.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang YZ, Chen XX, Dai A, Zhang XP, Liu YX, Liu Y. Spectroscopic studies on the interaction of lanthanum(III) 2-oxo-propionic acid salicyloyl hydrazone complex with bovine serum albumin. Luminescence. 2008;23(3):150–6. https://doi.org/10.1002/bio.1025.

    Article  CAS  PubMed  Google Scholar 

  44. Pinto MD, Duque AL, Macias P (2010) Fluorescence spectroscopic study on the interaction of resveratrol with lipoxygenase. J Mol Struct 980 (1-3):143-148. doi:https://doi.org/10.1016/j.molstruc.2010.07.006

  45. Yu X, Cai X, Luo L, Wang J, Ma M, Wang M, Zeng L. Influence of tea polyphenol and bovine serum albumin on tea cream formation by multiple spectroscopy methods and molecular docking. Food Chem. 2020;333:127432. https://doi.org/10.1016/j.foodchem.2020.127432.

    Article  CAS  PubMed  Google Scholar 

  46. Patnin S, Makarasen A, Kuno M, Deeyohe S, Techasakul S, Chaivisuthangkura A. Binding interaction of potent HIV-1 NNRTIs, amino-oxy-diarylquinoline with the transport protein using spectroscopic and molecular docking. Spectrochimica Acta Part A: Mol Biomol Spectroscopy. 2020;233:118159. https://doi.org/10.1016/j.saa.2020.118159.

    Article  CAS  Google Scholar 

  47. Zhu M, Wang L, Zhang H, Fan S, Wang Z, Li QX, Wang Y, Liu S. Interactions between tetrahydroisoindoline-1,3-dione derivatives and human serum albumin via multiple spectroscopy techniques. Environ Sci Pollut Res. 2018;25(18):17735–48. https://doi.org/10.1007/s11356-018-1955-9.

    Article  CAS  Google Scholar 

  48. Goormaghtigh E, Ruysschaert JM, Raussens V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J. 2006;90(8):2946–57. https://doi.org/10.1529/biophysj.105.072017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. D.A. Usoltsev, V.E. Sitnikova, T.N. Nosenko, R.O. Olekhnovich, M.V. Uspenskaya (2019) Comparison of protein secondary structure calculation methods based on infrared spectra deconvolution %J Scientific Tech J of Inform Technol Mech Optics

  50. Zhang YH, Yue YY, Li JZ, Chen XG. Studies on the interaction of caffeic acid with human serum albumin in membrane mimetic environments. J Photoch Photobio B. 2008;90(3):141–51. https://doi.org/10.1016/j.jphotobiol.2007.12.004.

    Article  CAS  Google Scholar 

  51. Yokoyama T, Kosaka Y, Mizuguchi M. Inhibitory activities of propolis and its promising component, caffeic acid phenethyl ester, against amyloidogenesis of human transthyretin. J Med Chem. 2014;57(21):8928–35. https://doi.org/10.1021/jm500997m.

    Article  CAS  PubMed  Google Scholar 

  52. Yokoyama T, Mizuguchi M. Crown ethers as transthyretin amyloidogenesis inhibitors. J Med Chem. 2019;62(4):2076–82. https://doi.org/10.1021/acs.jmedchem.8b01700.

    Article  CAS  PubMed  Google Scholar 

  53. Faridbod F, Ganjali MR, Larijani B, Riahi S, Saboury AA, Hosseini M, Norouzi P, Pillip C. Interaction study of pioglitazone with albumin by fluorescence spectroscopy and molecular docking. Spectrochim Acta A. 2011;78(1):96–101. https://doi.org/10.1016/j.saa.2010.09.001.

    Article  CAS  Google Scholar 

  54. Sahihi M, Ghayeb Y (2014) An investigation of molecular dynamics simulation and molecular docking: interaction of citrus flavonoids and bovine β-lactoglobulin in focus %J Computers in Biology and Medicine. 51

  55. Ismail NA, Jusoh SA. Molecular docking and molecular dynamics simulation studies to predict flavonoid binding on the surface of DENV2 E protein. Interdiscip Sci. 2017;9(4):499–511. https://doi.org/10.1007/s12539-016-0157-8.

    Article  CAS  PubMed  Google Scholar 

  56. Ajloo D, Mahmoodabadi N, Ghadamgahi M, Saboury AA. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase. J Biomol Struct Dyn. 2016;34(7):1495–511. https://doi.org/10.1080/07391102.2015.1081571.

    Article  CAS  PubMed  Google Scholar 

  57. Ma HC, Zou T, Li H, Cheng HM. The interaction of sodium dodecyl sulfate with trypsin: multi-spectroscopic analysis, molecular docking, and molecular dynamics simulation. Int J Biol Macromol. 2020;162:1546–54. https://doi.org/10.1016/j.ijbiomac.2020.08.020.

    Article  CAS  PubMed  Google Scholar 

  58. Massova I, Kollman PA. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov. 2000;18:113–35. https://doi.org/10.1023/A:1008763014207.

    Article  CAS  Google Scholar 

  59. Yahyaei M, Mehrnejad F, Naderi-manesh H, Rezayan AH. Follicle-stimulating hormone encapsulation in the cholesterol-modified chitosan nanoparticles via molecular dynamics simulations and binding free energy calculations. Eur J Pharm Sci. 2017;107:126–37. https://doi.org/10.1016/j.ejps.2017.07.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 21866011) and the Natural Science Foundation of Guangxi Province (No. 2017GXNSFAA198354).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyan Liu or Zhongsheng Yi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Huang, X., Yong, L. et al. Insight on the microscopic binding mechanism of bisphenol compounds (BPs) with transthyretin (TTR) based on multi-spectroscopic methods and computational simulations. Anal Bioanal Chem 414, 3765–3780 (2022). https://doi.org/10.1007/s00216-022-04028-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04028-0

Keywords

Navigation