Log in

Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ozturk R, Murt A. Epidemiology of urological infections: a global burden. World J Urol. 2020;38(11):2669–79.

    Article  PubMed  Google Scholar 

  2. Andrei CC, Moraillon A, Lau S, Felidj N, Yamakawa N, Bouckaert J, et al. Rapid and sensitive identification of uropathogenic Escherichia coli using a surface-enhanced-Raman-scattering-based biochip. Talanta. 2020;21(9):1211–24.

    Google Scholar 

  3. Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin N Am. 2014;28(1):1–13.

    Article  Google Scholar 

  4. Roleff HB. Methods of investigation. Dtsch Arztebl Int. 2010;107(46):824–32.

    PubMed  PubMed Central  Google Scholar 

  5. Galvan DD, Yu Q. Surface-enhanced Raman scattering for rapid detection and characterization of antibiotic-resistant bacteria. Adv Healthc Mater. 2018;7(13):1701–35.

    Article  Google Scholar 

  6. Norouz Dizaji A, Simsek Ozek N, Aysin F, Calis A, Yilmaz A, Yilmaz M. Combining vancomycin-modified gold nanorod arrays and colloidal nanoparticles as a sandwich model for the discrimination of Gram-positive bacteria and their detection via surface-enhanced Raman spectroscopy (SERS). Analyst. 2021;146(11):3642–53.

    Article  CAS  PubMed  Google Scholar 

  7. Fleming-Dutra KE, Hersh AL, Shapiro DJ, Bartoces M, Enns EA, File TM, et al. Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010–2011. Obstet Gynecol Surv. 2016;71(9):509–10.

    Article  Google Scholar 

  8. Kim H, Lee S, Seo HW, Kang B, Moon J, Lee KG, et al. Clustered regularly interspaced short palindromic repeats-mediated surface-enhanced Raman scattering assay for multidrug-resistant bacteria. ACS Nano. 2020;25(7):34–45.

    Google Scholar 

  9. Liu H, Yang L, Liu J. Three-dimensional SERS hot spots for chemical sensing: towards develo** a practical analyzer. Trends Anal Chem. 2016;80(16):364–72.

    Article  CAS  Google Scholar 

  10. Zong C, Premasiri R, Lin H, Huang Y, Zhang C, Yang C, et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nat Commun. 2020;10(6):2109–17.

    Google Scholar 

  11. Papagiannopoulou C, Parchen R, Rubbens P, Waegeman W. Fast pathogen identification using single-cell matrix-assisted laser desorption/ionization-aerosoltime-of-flight mass spectrometry data and deep learning methods. Anal Chem. 2020;92(11):7523–31.

    Article  CAS  PubMed  Google Scholar 

  12. van Belkum A, Dunne WM Jr. Next-generation antimicrobial susceptibility testing. J Clin Microbiol. 2013;51(7):2018–24.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review. Biosens Bioelectron. 2017;94(15):131–40.

    Article  CAS  PubMed  Google Scholar 

  14. Leonard H, Halachmi S, Ben-Dov N, Nativ O, Segal E. Unraveling antimicrobial susceptibility of bacterial networks on micropillar architectures using intrinsic phase-shift spectroscopy. ACS Nano. 2017;11(6):6167–77.

    Article  CAS  PubMed  Google Scholar 

  15. Hong W, Karanja CW, Abutaleb NS, Younis W, Zhang X, Seleem MN, et al. Antibiotic susceptibility determination within one cell cycle at single-bacterium level by stimulated Raman metabolic imaging. Anal Chem. 2018;90(6):3737–43.

    Article  CAS  PubMed  Google Scholar 

  16. Yang G, Fang X, Jia Q, Gu H, Li Y, Han C, et al. Fabrication of paper-based SERS substrates by spraying silver and gold nanoparticles for SERS determination of malachite green, methylene blue, and crystal violet in fish. Mikrochim Acta. 2020;187(5):31–40.

    Article  Google Scholar 

  17. Premasiri WR, Chen Y, Williamson PM, Bandarage DC, Pyles C, Ziegler LD. Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Anal Bioanal Chem. 2017;409(11):3043–54.

    Article  CAS  PubMed  Google Scholar 

  18. Tien N, Lin TH, Hung ZC, Lin HS, Wang IK, Chen HC, et al. Diagnosis of bacterial pathogens in the urine of urinary-tract-infection patients using surface-enhanced Raman spectroscopy. Molecules. 2018;23(12):732–41.

    Article  Google Scholar 

  19. Mircescu NE, Zhou H, Leopold N, Chis V, Ivleva NP, Niessner R, et al. Towards a receptor-free immobilization and SERS detection of urinary tract infections causative pathogens. Anal Bioanal Chem. 2014;406(13):3051–8.

    Article  CAS  PubMed  Google Scholar 

  20. Dryden SD, Anastasova S, Satta G, Thompson AJ, Leff DR, Darzi A. Rapid uropathogen identification using surface enhanced Raman spectroscopy active filters. Sci Rep. 2021;11(1):8802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang D, Zhou H, Dina NE, Haisch C. Portable bacteria-capturing chip for direct surface-enhanced Raman scattering identification of urinary tract infection pathogens. R Soc Open Sci. 2018;5(9):1809–15.

    Article  Google Scholar 

  22. Fang X, Zeng Q, Yan X, Zhao Z, Chen N, Deng Q, et al. Fast discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra and deep learning. J Appl Phys. 2021;129(12):1034–45.

    Article  Google Scholar 

  23. Sun C, Xu A, Liu D, **ong Z, Zhao F, Ding W. Deep learning-based classification of liver cancer histopathology images using only global labels. IEEE J Biomed Health Inform. 2020;24(6):1643–51.

    Article  PubMed  Google Scholar 

  24. Hershberger PJ, Pei Y, Bricker DA, Crawford TN, Shivakumar A, Vasoya M, et al. Advancing motivational interviewing training with artificial intelligence: ReadMI. Adv Med Educ Pract. 2021;12(5):613–25.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jia Z, Huang X, Chang EI, Xu Y. Constrained deep weak supervision for histopathology image segmentation. IEEE Trans Med Imaging. 2017;36(11):2376–88.

    Article  PubMed  Google Scholar 

  26. Ma B, Zhang J, Cao F, He Y. MACD R-CNN: an abnormal cell nucleus detection method. IEEE Access. 2020;8(1):166658–69.

    Article  Google Scholar 

  27. **e Y, Zhang J, **a Y. Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT. Med Image Anal. 2019;5(7):237–48.

    Article  Google Scholar 

  28. Kottmann K, Huembeli P, Lewenstein M, Acin A. Unsupervised phase discovery with deep anomaly detection. Phys Rev Lett. 2020;125(17):1706–13.

    Article  Google Scholar 

  29. Chen J, Yang M, Gao G. Semi-supervised dual-branch network for image classification. Knowl-Based Syst. 2020;19(7):411–22.

    Google Scholar 

  30. Thrift WJ, Ronaghi S, Samad M, Wei H, Nguyen DG, Cabuslay AS, et al. Deep learning analysis of vibrational spectra of bacterial lysate for rapid antimicrobial susceptibility testing. ACS Nano. 2020;14(11):15336–48.

    Article  PubMed  Google Scholar 

  31. Eraslan GAŽ, Gagneu J, Theis FJ. Deep learning: new computational modelling techniques for genomics. Nat Rev Genet. 2019;20(9):389–403.

    Article  CAS  PubMed  Google Scholar 

  32. Ozols M, Eckersley A, Platt CI, Stewart-McGuinness C, Hibbert SA, Revote J, et al. Predicting proteolysis in complex proteomes using deep learning. Int J Mol Sci. 2021;22(6):218–27.

    Article  Google Scholar 

  33. Ho CS, Jean N, Hogan CA, Blackmon L, Jeffrey SS, Holodniy M, et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun. 2019;10(1):4927–35.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao J, Liu H, Mclean DI, Zeng H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl Spectrosc. 2007;61(8):1225–32.

    Article  CAS  PubMed  Google Scholar 

  35. Ding J, Lin Q, Zhang J, Young GM, Jiang C, Zhong Y, et al. Rapid identification of pathogens by using surface-enhanced Raman spectroscopy and multi-scale convolutional neural network. Anal Bioanal Chem. 2021;413(14):3801–11.

    Article  CAS  PubMed  Google Scholar 

  36. Le TN, Tran TD, Kim MI. A convenient colorimetric bacteria detection method utilizing chitosan-coated magnetic nanoparticles. Nanomaterials (Basel). 2020;10(1):2115–21.

    Article  Google Scholar 

  37. Fang HY, Huang WM, Chen DH. One-step synthesis of positively charged bifunctional carbon dot/silver composite nanoparticles for killing and fluorescence imaging of Gram-negative bacteria. Nanotechnology. 2019;30(36):3656–63.

    Article  Google Scholar 

  38. Chen X, Tang M, Liu Y, Huang J, Liu Z, Tian H, et al. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Mikrochim Acta. 2019;186(2):102–11.

    Article  PubMed  Google Scholar 

  39. Wang K, Chen L, Ma X, Ma L, Chou KC, Cao Y, et al. Arcobacter identification and species determination using Raman spectroscopy combined with neural networks. Appl Environ Microbiol. 2020;86(20):3032–43.

    Article  Google Scholar 

  40. Li Y, Guo Y, Ye B, Zhuang Z, Lan P, Zhang Y, et al. Rapid label-free SERS detection of foodborne pathogenic bacteria based on hafnium ditelluride-Au nanocomposites. Journal of Innovative Optical Health Sciences. 2020;13(5):356–64.

    Article  Google Scholar 

  41. Fu S, Wang X, Wang T, Li Z, Han D, Yu C, et al. A sensitive and rapid bacterial antibiotic susceptibility test method by surface enhanced Raman spectroscopy. Braz J Microbiol. 2020;51(3):875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schroder UC, Beleites C, Assmann C, Glaser U, Hubner U, Pfister W, et al. Detection of vancomycin resistances in enterococci within 3 (1/2) hours. Sci Rep. 2015;5(3):821–7.

    Google Scholar 

  43. Zhao H, Zhang W, Liu Z, Huang D, Zhang W, Ye B, et al. Insights into the intracellular behaviors of black-phosphorus-based nanocomposites via surface-enhanced Raman spectroscopy. Nanophotonics. 2018;7(10):1651–62.

    Article  CAS  Google Scholar 

  44. Guo T, Ding F, Li D, Zhang W, Cao L, Liu Z. Full-scale label-free surface-enhanced Raman scattering analysis of mouse brain using a black phosphorus-based two-dimensional nanoprobe. Appl Sci. 2019;9(3):1087–90.

    Article  Google Scholar 

  45. Tumbarello M, Raffaelli F, Peghin M, Losito AR, Chirico L, Giuliano G, et al. Characterisation and risk factor profiling of Pseudomonas aeruginosa urinary tract infections: pinpointing those likely to be caused by multidrug-resistant strains. Int J Antimicrob Agents. 2020;55(4):1059–66.

    Article  Google Scholar 

  46. Liu X, Sai F, Li L, Zhu C, Huang H. Clinical characteristics and risk factors of catheter-associated urinary tract infections caused by Klebsiella pneumoniae. Ann Palliat Med. 2020;9(5):2668–77.

    Article  PubMed  Google Scholar 

  47. Doyev R, Ben-Shalom E, Megged O. The predictive utility of prior positive urine culture in children with recurrent urinary tract infections. Eur J Pediatr. 2020;179(3):415–21.

    Article  CAS  PubMed  Google Scholar 

  48. Hu S, Gu F, Chen M, Wang C, Li J, Yang J, et al. A novel method for identifying and distinguishing Cryptococcus neoformans and Cryptococcus gattii by surface-enhanced Raman scattering using positively charged silver nanoparticles. Sci Rep. 2020;10(1):324–35.

    Google Scholar 

  49. Granger JH, Schlotter NE, Crawford AC, Porter MD. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chem Soc Rev. 2016;45(14):3865–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the Discipline Construction Project of Guangdong Medical University (4SG21022G).

Author information

Authors and Affiliations

Authors

Contributions

Junfa Xu and Shaoxin Li provided experimental design and technical assistance. Qiuyue Fu and Xun Qiu performed the experiments and analyzed data. Peng Wang constructed the CNN model construction. Qiuyue Fu and Yanjiao Zhang wrote this paper. Jiang Pi was responsible for manuscript revision. Ya Huang and Zhusheng Guo provided clinical bacterial samples. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Shaoxin Li or Junfa Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Zhang, Y., Wang, P. et al. Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning–based spectroscopic analysis. Anal Bioanal Chem 413, 7401–7410 (2021). https://doi.org/10.1007/s00216-021-03691-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03691-z

Keywords

Navigation