Log in

A novel nanostructured poly(thionine)-deep eutectic solvent/CuO nanoparticle film-modified disposable pencil graphite electrode for determination of acetaminophen in the presence of ascorbic acid

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new electrochemical sensor based on thionine (TH), an electroactive polymer, and CuO nanoparticle (CuONP)-modified pencil graphite electrode (PGE) has been developed. Poly(thionine) (PTH) was formed on the CuO/PGE surface by electropolymerisation in ethaline deep eutectic solvent (DES) containing acetic acid dopant to form PTHEthaline/CuO/PGE. Cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry were utilized to evaluate the fabrication process, electrochemical properties, and performance parameters of the modified electrodes. The analytical performance of the PTHEthaline/CuO/PGE was evaluated with respect to linear range, limit of detection, repeatability, and reproducibility for the detection of acetaminophen (APAP) by electrooxidation in the presence of ascorbic acid (AA). Analytical parameters such as pH were optimized. The combined use of PTH and CuONP led to enhanced performance towards APAP due to the large electroactive surface area and synergistic catalytic effect, with a wide linear working range and low detection limit. The reliability of the proposed sensor for the detection of APAP was successfully tested in pharmaceutical samples containing APAP and AA, with very good recoveries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ameer Q, Adeloju SB. Development of a potentiometric catechol biosensor by entrapment of tyrosinase within polypyrrole film. Sensor Actuat B-Chem. 2009;140:5–11.

    Article  CAS  Google Scholar 

  2. Brett CMA. Deep eutectic solvents and applications in electrochemical sensing. Curr Opin Electrochem. 2018;10:143–8.

    Article  CAS  Google Scholar 

  3. da Silva W, Queiroz AC, Brett CMA. Nanostructured poly(phenazine)/Fe2O3 nanoparticle film modified electrodes formed by electropolymerization in ethaline-deep eutectic solvent. Microscopic and electrochemical characterization. Electrochim Acta. 2020;347:136284.

    Article  Google Scholar 

  4. Dalkıran B. Amperometric determination of heavy metal using an HRP inhibition biosensor based on ITO nanoparticles-ruthenium (III) hexamine trichloride composite: central composite design optimization. Bioelectrochem. 2020;135:107569.

    Article  Google Scholar 

  5. Campbell FW, Compton RG. The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem. 2010;396:241–59.

    Article  CAS  PubMed  Google Scholar 

  6. Lee SH, Lee JH, Tran VK, Ko E, Park CH, Chung WS, et al. Determination of acetaminophen using functional paper-based electrochemical devices. Sensor Actuat B-Chem. 2016;232:514–22.

    Article  CAS  Google Scholar 

  7. Kim D, Kim JM, Jeon Y, Lee J, Oh J, Antink WH, et al. Novel two-step activation of biomass-derived carbon for highly sensitive electrochemical determination of acetaminophen. Sensor Actuat B-Chem. 2018;259:50–8.

    Article  CAS  Google Scholar 

  8. Sun J, Schnackenberg LK, Holland RD, Schmitt TC, Cantor GH, Dragan YP, et al. Metabonomics evaluation of urine from rats given acute and chronic doses of acetaminophen using NMR and UPLC/MS. J Chrom B. 2008;871:328–40.

    Article  CAS  Google Scholar 

  9. Frangu A, Pravcová K, Šilarová P, Arbneshi T, Sýs M. Flow injection tyrosinase biosensor for direct determination of acetaminophen in human urine. Anal Bioanal Chem. 2019;411:2415–24.

    Article  CAS  PubMed  Google Scholar 

  10. Săndulescu R, Mirel S, Oprean R. The development of spectrophotometric and electroanalytical methods for ascorbic acid and acetaminophen and their applications in the analysis of effervescent dosage forms. J Pharm Biomed. 2000;23:77–87.

    Article  Google Scholar 

  11. Bayraktepe DE, Yazan Z. Application of single-use electrode based on nano-clay and MWCNT for simultaneous determination of acetaminophen, ascorbic acid and acetylsalicylic acid in pharmaceutical dosage. Electroanal. 2020;32:1263–72.

    Article  Google Scholar 

  12. Dalkıran B, Erden PE, Kaçar C, Kılıç E. Disposable amperometric biosensor based on poly-L-lysine and Fe3O4 NPS-chitosan composite for the detection of tyramine in cheese. Electroanal. 2019;31:1324–33.

    Article  Google Scholar 

  13. Alipour E, Majidi MR, Saadatirad A, Golabi SM. Determination of uric acid in biological samples on the pretreated pencil graphite electrode. Anal Methods. 2012;4:2288–95.

    Article  CAS  Google Scholar 

  14. Prathish KP, Carvalho R, Brett CMA. Electrochemical characterisation of poly(3,4-ethylenedioxythiophene) film modified glassy carbon electrodes prepared in deep eutectic solvents for simultaneous sensing of biomarkers. Electrochim Acta. 2016;187:704–13.

    Article  CAS  Google Scholar 

  15. Dalkıran B, Fernandes IPG, David M, Brett CMA. Electrochemical synthesis and characterization of poly(thionine)-deep eutectic solvent/carbon nanotube modified electrodes and application to electrochemical sensing. Microchim Acta. 2020;187:609. https://doi.org/10.1007/s00604-020-04588-x.

  16. Xu Y, Zhang X, Wang Y, He P, Fang Y. Enhancement of electrochemical capacitance of carbon nanotubes by polythionine modification. Chinese J Chem. 2010;28:417–21.

    Article  CAS  Google Scholar 

  17. Karyakin AA, Karyakina EE, Schmidt HL. Electropolymerized azines: a new group of electroactive polymers. Electroanal. 1999;11:149–55.

    Article  CAS  Google Scholar 

  18. Liu T, Luo Y, Wang W, Kong L, Zhu J, Tan L. Non-enzymatic detection of hydrogen peroxide based on Fenton-type reaction on poly (azure A)-chitosan/Cu modified electrode. Electrochim Acta. 2015;182:742–50.

    Article  CAS  Google Scholar 

  19. Pandey I, Bairagi PK, Verma N. Electrochemically grown polymethylene blue nanofilm on copper-carbon nanofiber nanocomposite: an electrochemical sensor for creatinine. Sensor Actuat B-Chem. 2018;277:562–70.

    Article  CAS  Google Scholar 

  20. Yin Z, Wu J, Yang Z. A sensitive mercury (II) sensor based on CuO nanoshuttles/poly (thionine) modified glassy carbon electrode. Microchim Acta. 2010;170(3–4):307–12.

    Article  CAS  Google Scholar 

  21. Reddy GRK, Kumar PS. Template electrodeposition of high-performance copper oxide nanosensors for electrochemical analysis of hydrogen peroxide. Mat Sci Eng C-Mat. 2017;75:1480–8.

    Article  Google Scholar 

  22. Li B, Zhou Y, Wu W, Liu M, Mei S, Zhou Y, et al. Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly (nicotinamide)/CuO nanoparticles modified electrode. Biosens Bioelectron. 2015;67:121–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ghica ME, Brett CMA. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors. Talanta. 2014;130:198–206.

    Article  CAS  PubMed  Google Scholar 

  24. Dalkiran B, Kacar C, Erden PE, Kilic E. Amperometric xanthine biosensors based on chitosan-Co3O4-multiwall carbon nanotube modified glassy carbon electrode. Sensor Actuat B-Chem. 2014;200:83–91.

    Article  CAS  Google Scholar 

  25. Yang R, Ruan C, Dai W, Deng J, Kong J. Electropolymerisation of thionine in neutral aqueous media and H2O2 biosensor based on poly(thionine). Electrochim Acta. 1999;44:1585–96.

    Article  CAS  Google Scholar 

  26. Brett CMA, Oliveira Brett AM. Electrochemistry: principles, methods, and applications. Oxford: Oxford University Press; 1993.

    Google Scholar 

  27. Ghica ME, Ferreira GM, Brett CMA. Poly(thionine)-carbon nanotube modified carbon film electrodes and application to the simultaneous determination of acetaminophen and dipyrone. J Solid State Electrochem. 2015;19:2869–81.

    Article  CAS  Google Scholar 

  28. Yang M, Guo ML, Feng YL, Lei YM, Cao YJ, Zhu DB, Yu Y, Ding L. Sensitive voltammetric detection of metronidazole based on three-dimensional graphene-like carbon architecture/polythionine modified glassy carbon electrode. J Electrochem Soc 2018;165:B:530-B535.

  29. Zhang H, Han J, Yang B. Structural fabrication and functional modulation of nanoparticle–polymer composites. Adv Funct Mater. 2010;20:1533–50.

    Article  CAS  Google Scholar 

  30. Feng H, Wang H, Zhang Y, Yan B, Shen G, Yu R. A direct electrochemical biosensing platform constructed by incorporating carbon nanotubes and gold nanoparticles onto redox poly(thionine) film. Anal Sci. 2007;23:235–9.

    Article  PubMed  Google Scholar 

  31. Chitravathi S, Munichandraiah N. Voltammetric determination of paracetamol, tramadol and caffeine using poly(Nile blue) modified glassy carbon electrode. J Electroanal Chem. 2016;764:93–103.

    Article  CAS  Google Scholar 

  32. Serra B, Morales MD, Reviejo AJ, Hall EH, **arron JM. Rapid and highly sensitive electrochemical determination of alkaline phosphatase using a composite tyrosinase biosensor. Anal Biochem. 2015;336(2):289–94.

    Article  Google Scholar 

  33. Habibi B, Jahanbakhshi M. Simultaneous determination of ascorbic acid, paracetamol and phenylephrine: carbon nanotubes ceramic electrode as a renewable electrode. Anal Bioanal Electrochem. 2015;7:45–58.

    CAS  Google Scholar 

  34. Rajabi H, Noroozifar M, Khorasani-Motlagh M. Graphite paste electrode modified with Lewatit® FO36 nano-resin for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Anal Methods. 2016;8:1924–34.

    Article  CAS  Google Scholar 

  35. Kemmegne-Mbouguen JC, Ngameni E. Simultaneous quantification of dopamine, acetaminophen and tyrosine at carbon paste electrodes modified with porphyrin and clay. Anal Methods. 2017;9:4157–66.

    Article  CAS  Google Scholar 

  36. Yang L, Huang N, Lu Q, Liu M, Li H, Zhang Y, et al. A quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a ferrocene derivative functional Au NPs/carbon dots nanocomposite and graphene. Anal Chim Acta. 2016;903:69–80.

    Article  CAS  PubMed  Google Scholar 

  37. Anupam Kumar M, Lakshminarayanan V, Ramamurthy SS. Platinum nanoparticles decorated graphene-modified glassy carbon electrode toward the electrochemical determination of ascorbic acid, dopamine, and paracetamol. C R Chim. 2019;22:58–72.

    Article  Google Scholar 

  38. Ejaz A, Jeon S. A highly stable and sensitive GO-XDA-Mn2O3 electrochemical sensor for simultaneous electrooxidation of paracetamol and ascorbic acid. Electrochim Acta. 2017;245:742–51.

    Article  CAS  Google Scholar 

  39. Phong NH, Toan TTT, Tinh MX, Tuyen TN, Mau TX, Khieu DQ. Simultaneous voltammetric determination of ascorbic acid, paracetamol, and caffeine using electrochemically reduced graphene-oxide-modified electrode. J Nanomater. 2018;5348016. https://doi.org/10.1155/2018/5348016.

  40. Li C, Xu J, Wu Y, Zhang Y, Zhang C, Lei W, et al. g-C3N4 nanofibers doped poly (3, 4-ethylenedioxythiophene) modified electrode for simultaneous determination of ascorbic acid and acetaminophen. J Electroanal Chem. 2018;824:52–9.

    Article  CAS  Google Scholar 

  41. Iranmanesh T, Foroughi MM, Jahani S, Zandi MS, Nadiki HH. Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen. Talanta. 2020;207:120318.

    Article  CAS  PubMed  Google Scholar 

  42. Ghanbari K, Bonyadi S. An electrochemical sensor based on reduced graphene oxide decorated with polypyrrole nanofibers and zinc oxide–copper oxide p–n junction heterostructures for the simultaneous voltammetric determination of ascorbic acid, dopamine, paracetamol, and tryptophan. New J Chem. 2018;42(11):8512–23.

    Article  CAS  Google Scholar 

  43. Taei M, Salavati H, Hasanpour F, Habibollahi S, Baghlani H. Simultaneous determination of ascorbic acid, acetaminophen and codeine based on multi-walled carbon nanotubes modified with magnetic nanoparticles paste electrode. Mat Sci Eng C-Mat. 2016;69:1–11.

    Article  CAS  Google Scholar 

  44. Thu PTK, Trinh ND, Hoan NTV, Du DX, Mau TX, Trung VH, et al. Synthesis of cobalt ferrite and simultaneous determination of ascorbic acid, acetaminophen and caffeine by voltammetric method using cobalt ferrite modified electrode. J Mater Sci Mater. 2019;30:17245–61.

    Article  CAS  Google Scholar 

Download references

Funding

B. Dalkiran thankfully acknowledges the Scientific and Technological Research Council of Turkey (TUBITAK 2219) for a postdoctoral fellowship. The authors thank Fundação para a Ciência e a Tecnologia (FCT), Portugal, project PTDC/QEQ-QAN/2201/2014, in the framework of Project 3599-PPCDT, co-financed by the European Community Fund FEDER, and CEMMPRE, project UIDB/EMS/00285/2020 by FEDER funds through the program COMPETE – Programa Operacional Factores de Competitividade, and by national funds through FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. A. Brett.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalkiran, B., Brett, C.M.A. A novel nanostructured poly(thionine)-deep eutectic solvent/CuO nanoparticle film-modified disposable pencil graphite electrode for determination of acetaminophen in the presence of ascorbic acid. Anal Bioanal Chem 413, 1149–1157 (2021). https://doi.org/10.1007/s00216-020-03078-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03078-6

Keywords

Navigation