Log in

From shotgun to targeted proteomics: rapid Scout-MRM assay development for monitoring potential immunomarkers in Dreissena polymorpha

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A highly multiplexed liquid chromatography mass spectrometry–multiple reaction monitoring (MRM)-based assay has been developed for evaluating 107 candidate immune biomarkers in both hemocytes and plasma of the zebra mussel Dreissena polymorpha. The Scout-MRM strategy was employed for the first time, shortening the implementation of a targeted MRM bottom-up proteomics assay using selected immune protein-related peptides identified by shotgun discovery proteogenomics. This strategy relies on spiking scout peptides during the discovery phase and using them to build and deploy the MRM targeted proteomics method. It proved to be highly relevant, since about 90% of the targeted peptides and proteins were monitored and rapidly measured in both hemocyte and plasma samples. The sample preparation protocol was optimized by evaluating the digestion efficiency of tryptic peptides over time. The accuracy and precision of 50 stable isotope-labeled peptides were evaluated for use as internal standards. Finally, the specificity of the transitions was thoroughly assessed to ensure the reliable measurement of protein biomarkers. Several analytical and biological validation criteria were evaluated across hemocytes and plasma samples exposed ex vivo to biological contaminants, resulting in the validation of two Scout-MRM assays for the relative quantitation of 85 and 89 proteins in hemocytes and plasma, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oikari A, Boon JP, Fairbrother A, Fossi MC, Rand G, Renzoni A, et al. Development and Validation of Biomarkers. Biomarkers, Springer Berlin Heidelberg 1993;63–77. https://doi.org/10.1007/978-3-642-84631-1_5.

  2. Gosset A, Ferro Y, Durrieu C. Methods for evaluating the pollution impact of urban wet weather discharges on biocenosis: a review. Water Res. 2016;89:330–54. https://doi.org/10.1016/j.watres.2015.11.020.

    Article  CAS  PubMed  Google Scholar 

  3. Gouveia D, Almunia C, Cogne Y, Pible O, Degli-Esposti D, Salvador A, et al. Ecotoxicoproteomics: a decade of progress in our understanding of anthropogenic impact on the environment. J Proteome. 2019;198:66–77. https://doi.org/10.1016/j.jprot.2018.12.001.

    Article  CAS  Google Scholar 

  4. Lemos MFL, Soares AMVM, Correia AC, Esteves AC. Proteins in ecotoxicology – how, why and why not? Proteomics. 2010;10:873–87. https://doi.org/10.1002/pmic.200900470.

    Article  CAS  PubMed  Google Scholar 

  5. Monsinjon T, Knigge T. Proteomic applications in ecotoxicology. Proteomics. 2007;7:2997–3009. https://doi.org/10.1002/pmic.200700101.

    Article  CAS  PubMed  Google Scholar 

  6. Bjørnstad A, Larsen BK, Skadsheim A, Jones MB, Andersen OK. The potential of ecotoxicoproteomics in environmental monitoring: biomarker profiling in mussel plasma using ProteinChip array technology. J Toxicol Environ Health Part A. 2006;69:77–96. https://doi.org/10.1080/15287390500259277.

    Article  CAS  PubMed  Google Scholar 

  7. Apraiz I, Cajaraville MP, Cristobal S. Peroxisomal proteomics: biomonitoring in mussels after the Prestige’s oil spill. Mar Pollut Bull. 2009;58:1815–26. https://doi.org/10.1016/j.marpolbul.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Wei Y, Wang D, Chan LL, Dai J. Proteomic study of the effects of complex environmental stresses in the livers of goldfish (Carassius auratus) that inhabit Gaobeidian Lake in Bei**g, China. Ecotoxicology. 2008;17:213–20. https://doi.org/10.1007/s10646-007-0187-4.

    Article  CAS  PubMed  Google Scholar 

  9. Trapp J, Armengaud J, Pible O, Gaillard J-C, Abbaci K, Habtoul Y, et al. Proteomic investigation of male Gammarus fossarum, a freshwater crustacean, in response to endocrine disruptors. J Proteome Res. 2015;14:292–303. https://doi.org/10.1021/pr500984z.

    Article  CAS  PubMed  Google Scholar 

  10. Gouveia D, Chaumot A, Charnot A, Queau H, Armengaud J, Almunia C, et al. Assessing the relevance of a multiplexed methodology for proteomic biomarker measurement in the invertebrate species Gammarus fossarum: a physiological and ecotoxicological study. Aquat Toxicol. 2017;190:199–209. https://doi.org/10.1016/j.aquatox.2017.07.007.

    Article  CAS  PubMed  Google Scholar 

  11. Borcier E, Artigaud S, Gaillard J-C, Armengaud J, Charrier G, Couteau J, et al. Coupling caging and proteomics on the European flounder (Platichthys flesus) to assess the estuarine water quality at micro scale. Sci Total Environ. 2019;695:133760. https://doi.org/10.1016/j.scitotenv.2019.133760.

    Article  CAS  PubMed  Google Scholar 

  12. Palos-Ladeiro MP, Barjhoux I, Bigot-Clivot A, Bonnard M, David E, Dedourge-Geffard O, et al. Mussel as a Tool to Define Continental Watershed Quality. In: Ray S, editor. Organismal and Molecular Malacology, InTech. 2017. https://doi.org/10.5772/67995.

  13. Leprêtre M, Almunia C, Armengaud J, Salvador A, Geffard A, Palos-Ladeiro M. The immune system of the freshwater zebra mussel, Dreissena polymorpha, decrypted by proteogenomics of hemocytes and plasma compartments. J Proteome. 2019;202:103366. https://doi.org/10.1016/j.jprot.2019.04.016.

    Article  CAS  Google Scholar 

  14. Leprêtre M, Almunia C, Armengaud J, Le Guernic A, Salvador A, Geffard A, et al. Identification of immune-related proteins of Dreissena polymorpha hemocytes and plasma involved in host-microbe interactions by differential proteomics. Sci Rep. 2020;10:1–18. https://doi.org/10.1038/s41598-020-63321-z.

    Article  CAS  Google Scholar 

  15. Kockmann T, Trachsel C, Panse C, Wahlander A, Selevsek N, Grossmann J, et al. Targeted proteomics coming of age – SRM, PRM and DIA performance evaluated from a core facility perspective. Proteomics. 2016;16:2183–92. https://doi.org/10.1002/pmic.201500502.

    Article  CAS  PubMed  Google Scholar 

  16. Bourmaud A, Gallien S, Domon B. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: principle and applications. Proteomics. 2016;16:2146–59. https://doi.org/10.1002/pmic.201500543.

    Article  CAS  PubMed  Google Scholar 

  17. Vidova V, Spacil Z. A review on mass spectrometry-based quantitative proteomics: targeted and data independent acquisition. Anal Chim Acta. 2017;964:7–23. https://doi.org/10.1016/j.aca.2017.01.059.

    Article  CAS  PubMed  Google Scholar 

  18. Schiffmann C, Hansen R, Baumann S, Kublik A, Nielsen PH, Adrian L, et al. Comparison of targeted peptide quantification assays for reductive dehalogenases by selective reaction monitoring (SRM) and precursor reaction monitoring (PRM). Anal Bioanal Chem. 2014;406:283–91. https://doi.org/10.1007/s00216-013-7451-7.

    Article  CAS  PubMed  Google Scholar 

  19. Ronsein GE, Pamir N, von Haller PD, Kim DS, Oda MN, Jarvik GP, et al. Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. J Proteome. 2015;113:388–99. https://doi.org/10.1016/j.jprot.2014.10.017.

    Article  CAS  Google Scholar 

  20. Charnot A, Gouveia D, Armengaud J, Almunia C, Chaumot A, Lemoine J, et al. Multiplexed assay for protein quantitation in the invertebrate Gammarus fossarum by liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem. 2017;409:3969–91. https://doi.org/10.1007/s00216-017-0348-0.

    Article  CAS  PubMed  Google Scholar 

  21. Saleh S, Staes A, Deborggraeve S, Gevaert K. Targeted proteomics for studying pathogenic Bacteria. Proteomics. 2019;19:1800435. https://doi.org/10.1002/pmic.201800435.

    Article  CAS  Google Scholar 

  22. Gouveia D, Chaumot A, Charnot A, Almunia C, François A, Navarro L, et al. Ecotoxico-proteomics for aquatic environmental monitoring: first in situ application of a new proteomics-based multibiomarker assay using caged amphipods. Environ Sci Technol. 2017;51:13417–26. https://doi.org/10.1021/acs.est.7b03736.

    Article  CAS  PubMed  Google Scholar 

  23. Hoffman MA, Fang B, Haura EB, Rix U, Koomen JM. Comparison of quantitative mass spectrometry platforms for monitoring kinase ATP probe uptake in lung Cancer. J Proteome Res. 2018;17:63–75. https://doi.org/10.1021/acs.jproteome.7b00329.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Vu J, Thompson MG, Sharpless WA, Chan LJG, Gin JW, et al. A rapid methods development workflow for high-throughput quantitative proteomic applications. PLoS One. 2019;14:e0211582. https://doi.org/10.1371/journal.pone.0211582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallien S, Peterman S, Kiyonami R, Souady J, Duriez E, Schoen A, et al. Highly multiplexed targeted proteomics using precise control of peptide retention time. Proteomics. 2012;12:1122–33. https://doi.org/10.1002/pmic.201100533.

    Article  CAS  PubMed  Google Scholar 

  26. Gallien S, Kim SY, Domon B. Large-scale targeted proteomics using internal standard triggered-parallel reaction monitoring (IS-PRM). Mol Cell Proteomics. 2015;14:1630–44. https://doi.org/10.1074/mcp.O114.043968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rougemont B, Bontemps Gallo S, Ayciriex S, Carrière R, Hondermarck H, Lacroix JM, et al. Scout-MRM: multiplexed targeted mass spectrometry-based assay without retention time scheduling exemplified by Dickeya dadantii proteomic analysis during plant infection. Anal Chem. 2017;89:1421–6. https://doi.org/10.1021/acs.analchem.6b03201.

    Article  CAS  PubMed  Google Scholar 

  28. Salvador A, Carrière R, Ayciriex S, Margoum C, Leblanc Y, Lemoine J. Scout-multiple reaction monitoring: A liquid chromatography tandem mass spectrometry approach for multi-residue pesticide analysis without time scheduling. J Chromatogr A. 2020;461046. https://doi.org/10.1016/j.chroma.2020.461046.

  29. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. PNAS. 2003;100:6940–5. https://doi.org/10.1073/pnas.0832254100.

    Article  CAS  PubMed  Google Scholar 

  30. Chiva C, Sabidó E. Peptide selection for targeted protein quantitation. J Proteome Res. 2017;16:1376–80. https://doi.org/10.1021/acs.jproteome.6b00115.

    Article  CAS  PubMed  Google Scholar 

  31. Chalkley RJ, Baker PR, Huang L, Hansen KC, Allen NP, Rexach M, et al. Comprehensive Analysis of a Multidimensional Liquid Chromatography Mass Spectrometry Dataset Acquired on a Quadrupole Selecting, Quadrupole Collision Cell, Time-of-flight Mass Spectrometer: II. New developments in Protein Prospector allow for reliable and comprehensive automatic analysis of large datasets. Mol Cell Proteomics. 2005;4:1194–1204.

  32. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  Google Scholar 

  33. Weiß N, Wente W, Müller P. Eppendorf LoBind®: evaluation of protein recovery in Eppendorf protein LoBind tubes and plates. Eppendorf Appl Note. 2010;180:5.

    Google Scholar 

  34. Goebel-Stengel M, Stengel A, Taché Y, Reeve JR. The importance of using the optimal plastic and glassware in studies involving peptides. Anal Biochem. 2011;414:38–46. https://doi.org/10.1016/j.ab.2011.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. MacLean B, Tomazela DM, Abbatiello SE, Zhang S, Whiteaker JR, Paulovich AG, et al. Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry. Anal Chem. 2010;82:10116–24. https://doi.org/10.1021/ac102179j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–8. https://doi.org/10.1093/bioinformatics/btq054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farrah T, Deutsch EW, Kreisberg R, Sun Z, Campbell DS, Mendoza L, et al. PASSEL: the PeptideAtlas SRM Experiment Library. Proteomics. 2012;12:1170–5. https://doi.org/10.1002/pmic.201100515.

    Article  CAS  PubMed  Google Scholar 

  38. Kadian N, Raju KSR, Rashid M, Malik MY, Taneja I, Wahajuddin M. Comparative assessment of bioanalytical method validation guidelines for pharmaceutical industry. J Pharm Biomed Anal. 2016;126:83–97. https://doi.org/10.1016/j.jpba.2016.03.052.

    Article  CAS  PubMed  Google Scholar 

  39. Le Guernic A, Geffard A, Rioult D, Bonnard I, Le Foll F, Palos LM. First evidence of cytotoxic effects of human protozoan parasites on zebra mussel ( Dreissena polymorpha ) haemocytes. Environ Microbiol Rep. 2019;11:414–8. https://doi.org/10.1111/1758-2229.12720.

    Article  CAS  PubMed  Google Scholar 

  40. Morga B, Arzul I, Faury N, Renault T. Identification of genes from flat oyster Ostrea edulis as suitable housekee** genes for quantitative real time PCR. Fish Shellfish Immunol. 2010;29:937–45. https://doi.org/10.1016/j.fsi.2010.07.028.

    Article  CAS  PubMed  Google Scholar 

  41. Bao Y, Waldemarson S, Zhang G, Wahlander A, Ueberheide B, Myung S, et al. Detection and correction of interference in SRM analysis. Methods. 2013;61:299–303. https://doi.org/10.1016/j.ymeth.2013.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Y-T, Chen H-W, Domanski D, Smith DS, Liang K-H, Wu C-C, et al. Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers. J Proteome. 2012;75:3529–45. https://doi.org/10.1016/j.jprot.2011.12.031.

    Article  CAS  Google Scholar 

  43. Percy AJ, Chambers AG, Yang J, Borchers CH. Multiplexed MRM-based quantitation of candidate cancer biomarker proteins in undepleted and non-enriched human plasma. Proteomics. 2013;13:2202–15. https://doi.org/10.1002/pmic.201200316.

    Article  CAS  PubMed  Google Scholar 

  44. Gerdol M, Gomez-Chiarri M, Castillo MG, Figueras A, Fiorito G, Moreira R, et al. Immunity in Molluscs: recognition and effector mechanisms, with a focus on Bivalvia. Advances in comparative immunology. Cham: Springer; 2018. p. 225–341. https://doi.org/10.1007/978-3-319-76768-0_11.

    Book  Google Scholar 

  45. Zhang D, Jiang S, Ma J, Jiang J, Pan D, Xu X. Molecular cloning, characterization and expression analysis of a clip-domain serine protease from pearl oyster Pinctada fucata. Fish Shellfish Immunol. 2009;26:662–8. https://doi.org/10.1016/j.fsi.2009.02.015.

    Article  CAS  PubMed  Google Scholar 

  46. Allam B, Raftos D. Immune responses to infectious diseases in bivalves. J Invertebr Pathol. 2015;131:121–36. https://doi.org/10.1016/j.jip.2015.05.005.

    Article  CAS  PubMed  Google Scholar 

  47. Xue Q, Itoh N, Schey KL, Cooper RK, La Peyre JF. Evidence indicating the existence of a novel family of serine protease inhibitors that may be involved in marine invertebrate immunity. Fish Shellfish Immunol. 2009;27:250–9. https://doi.org/10.1016/j.fsi.2009.05.006.

    Article  CAS  PubMed  Google Scholar 

  48. Kvansakul M. Viral Infection and Apoptosis. Viruses. 2017;356. https://doi.org/10.3390/v9120356.

  49. Green TJ, Raftos D, Speck P, Montagnani C. Antiviral immunity in marine molluscs. J Gen Virol. 2015;96:2471–82. https://doi.org/10.1099/jgv.0.000244.

    Article  CAS  PubMed  Google Scholar 

  50. Renault T, Faury N, Barbosa-Solomieu V, Moreau K. Suppression substractive hybridisation (SSH) and real time PCR reveal differential gene expression in the Pacific cupped oyster, Crassostrea gigas, challenged with Ostreid herpesvirus 1. Dev Comp Immunol. 2011;35:725–35. https://doi.org/10.1016/j.dci.2011.02.004.

    Article  CAS  PubMed  Google Scholar 

  51. Bai C-M, Rosani U, **n L-S, Li G-Y, Li C, Wang Q-C, et al. Dual transcriptomic analysis of Ostreid herpesvirus 1 infected Scapharca broughtonii with an emphasis on viral anti-apoptosis activities and host oxidative bursts. Fish Shellfish Immunol. 2018;82:554–64. https://doi.org/10.1016/j.fsi.2018.08.054.

    Article  CAS  PubMed  Google Scholar 

  52. Bai C-M, Zhang S-M, Li Y-N, **n L-S, Rosani U, Wang C-M. Dual transcriptomic analysis reveals a delayed antiviral response of Haliotis diversicolor supertexta against Haliotid Herpesvirus-1. Viruses. 2019;11:383. https://doi.org/10.3390/v11040383.

    Article  CAS  PubMed Central  Google Scholar 

  53. Green TJ, Chataway T, Melwani AR, Raftos DA. Proteomic analysis of hemolymph from poly(I:C)-stimulated Crassostrea gigas. Fish Shellfish Immunol. 2016;48:39–42. https://doi.org/10.1016/j.fsi.2015.11.018.

    Article  CAS  PubMed  Google Scholar 

  54. Zong Y, Liu Z, Wu Z, Han Z, Wang L, Song L. A novel globular C1q domain containing protein (C1qDC-7) from Crassostrea gigas acts as pattern recognition receptor with broad recognition spectrum. Fish Shellfish Immunol. 2019;84:920–6. https://doi.org/10.1016/j.fsi.2018.10.079.

    Article  CAS  PubMed  Google Scholar 

  55. Kawasaki H, Iwamuro S. Potential roles of histones in host defense as antimicrobial agents. Infect Disord Drug Targets. 2008;8:195–205.

    Article  CAS  Google Scholar 

  56. Poirier AC, Schmitt P, Rosa RD, Vanhove AS, Kieffer-Jaquinod S, Rubio TP, et al. Antimicrobial histones and DNA traps in invertebrate immunity: EVIDENCES IN CRASSOSTREA GIGAS. J Biol Chem. 2014;289:24821–31. https://doi.org/10.1074/jbc.M114.576546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the University of Reims Champagne-Ardenne for its financial support (project PROMETHEE). This work benefitted from the French GDR “Aquatic Ecotoxicology” framework which is aimed at fostering stimulating scientific discussions and collaborations for more integrative approaches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Salvador.

Ethics declarations

The authors declare the following financial interests: Jerôme Lemoine filed a patent describing the Scout-MRM concept for targeted analysis by mass spectrometry. The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leprêtre, M., Palos-Ladeiro, M., Faugere, J. et al. From shotgun to targeted proteomics: rapid Scout-MRM assay development for monitoring potential immunomarkers in Dreissena polymorpha. Anal Bioanal Chem 412, 7333–7347 (2020). https://doi.org/10.1007/s00216-020-02868-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02868-2

Keywords

Navigation