Log in

Electrochemical mixed aptamer-antibody sandwich assay for mucin protein 16 detection through hybridization chain reaction amplification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A mixed aptamer-antibody sandwich assay for the determination of mucin protein 16 (MUC16) was developed based on hybridization chain reaction (HCR) with methylene blue (MB) as an electrochemical indicator. First, MUC16 antibody was adsorbed onto the surface of the Au nanoparticle (AuNP)-modified indium tin oxide (ITO) electrode to effectively capture the target MUC16. After MUC16 was captured by the MUC16 aptamer, an antibody/MUC16/aptamer sandwich structure formed for the highly selective detection of MUC16. The 3′ end of the aptamer was then subjected to HCR with the assistance of auxiliary probes to obtain DNA concatemers. Numerous MB molecules bonded with G bases in the DNA concatemers by immersing the modified ITO electrode into a stirred solution containing MB with KCl. Stepwise changes in the microscopic features of the electrode surface were studied by scanning electron microscopy (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the electrochemical behavior of the different modified electrodes. The oxidation current of MB was detected by differential pulse voltammetry (DPV). Under the optimum conditions, the proposed mixed aptamer-antibody sandwich assay showed wide dynamic range from 0.39 to 200 unit mL−1 with a low detection limit of 0.02 unit mL−1 (S/N ratio = 3). The proposed method showed good accuracy, selectivity, and acceptable reproducibility.

Graphical abstract

An electrochemical mixed aptamer-antibody sandwich assay based on the aptamer-induced HCR amplification strategy was fabricated for the highly sensitive detection of MUC16. The mixed aptamer-antibody sandwich assay showed acceptable performance of detection range, detection limit, reproducibility, and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blalock TD, Spurr-Michaud SJ, Tisdale AS, Heimer SR, Gilmore MS, Ramesh V, et al. Functions of MUC16 in corneal epithelial cells. Investig Ophthalmol Vis Sci. 2007;48:4509–18.

    Google Scholar 

  2. Perez BH, Gipson IK. Focus on molecules: human mucin MUC16. Exp Eye Res. 2008;87:400–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Diaconu I, Cristea C, Hârceagă V, Marrazza G, Berindan-Neagoe I, Săndulescu R. Electrochemical immunosensors in breast and ovarian cancer. Clin Chim Acta. 2013;425:128–38.

    CAS  PubMed  Google Scholar 

  4. Taleat Z, Cristea C, Marrazza G, Mazloum-Ardakani M, Sǎndulescu R. Electrochemical immunoassay based on aptamer–protein interaction and functionalized polymer for cancer biomarker detection. J Electroanal Chem. 2014;717–718:119–24.

    Google Scholar 

  5. Ricardo S, Marcos-Silva L, Pereira D, Pinto R, Almeida R, Söderberg O, et al. Detection of glyco–mucin profiles improves specificity of MUC16 and MUC1 biomarkers in ovarian serous tumours. Mol Oncol. 2015;9:503–12.

    CAS  PubMed  Google Scholar 

  6. Gedi V, Song CK, Kim GB, Lee JO, Oh E, Shin BS, et al. Sensitive on–chip detection of cancer antigen 125 using a DNA aptamer/carbon nanotube network platform. Sensors Actuators B Chem. 2018;256:89–97.

    CAS  Google Scholar 

  7. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.

    CAS  PubMed  Google Scholar 

  8. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22.

    CAS  PubMed  Google Scholar 

  9. Aydoğdu Tığ G, Pekyardımcı Ş. An electrochemical sandwich–type aptasensor for determination of lipocalin–2 based on graphene oxide/polymer composite and gold nanoparticles. Talanta. 2020;210:120666.

    PubMed  Google Scholar 

  10. Eaton RM, Shallcross JA, Mael LE, Mears KS, Minkoff L, Scoville DJ, et al. Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE–SELEX and high–throughput sequencing. Anal Bioanal Chem. 2015;407:6965–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gong W, Duan N, Wu S, Huang Y, Chen X, Wang Z. Selection, identification, and application of dual DNA aptamers against Shigella sonnei. Anal Methods. 2015;7:3625–31.

    CAS  Google Scholar 

  12. Wang J, Wang F, Dong S. Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch. J Electroanal Chem. 2009;626:1–5.

    CAS  Google Scholar 

  13. Liu H, Xu S, He Z, Deng A, Zhu JJ. Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer–DNA concatemer–quantum dots probes. Anal Chem. 2013;85:3385–92.

    CAS  PubMed  Google Scholar 

  14. Hashkavayi AB, Raoof JB, Ojani R, Kavoosian S. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label–free detection of colorectal cancer (CT26) cells. Biosens Bioelectron. 2017;92:630–7.

    CAS  PubMed  Google Scholar 

  15. Hashkavayi AB, Raoof JB. Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin. Biosens Bioelectron. 2017;91:650–7.

    CAS  PubMed  Google Scholar 

  16. Wang H, Chen H, Huang Z, Li T, Deng A, Kong J. DNase I enzyme–aided fluorescence signal amplification based on graphene oxide–DNA aptamer interactions for colorectal cancer exosome detection. Talanta. 2018;184:219–26.

    CAS  PubMed  Google Scholar 

  17. Park KS. Nucleic acid aptamer–based methods for diagnosis of infections. Biosens Bioelectron. 2018;102:179–88.

    CAS  PubMed  Google Scholar 

  18. Evtugyn G, Hianik T. Electrochemical DNA sensors and aptasensors based on electropolymerized materials and polyelectrolyte complexes. TrAC–Trends Anal Chem. 2016;79:168–78.

    CAS  Google Scholar 

  19. Qureshi A, Gurbuz Y, Niazi JH. Capacitive aptamer–antibody based sandwich assay for the detection of VEGF cancer biomarker in serum. Sensors Actuators B Chem. 2015;209:645–51.

    CAS  Google Scholar 

  20. Florea A, Taleat Z, Cristea C, Mazloum–Ardakani M, Sǎndulescu R. Label free MUC1 aptasensors based on electrodeposition of gold nanoparticles on screen printed electrodes. Electrochem Commun. 2013;33:127–30.

    CAS  Google Scholar 

  21. Wang F, Gopinath SCB, Lakshmipriya T. Aptamer–antibody complementation on multiwalled carbon nanotube–gold transduced dielectrode surfaces to detect pandemic swine influenza virus. Int J Nanomedicine. 2019;14:8469–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yao J, Li S, Zhang L, Yang Y, Gopinath SCB, Lakshmipriya T, et al. Aptamer–antibody dual probes on single–walled carbon nanotube bridged dielectrode: comparative analysis on human blood clotting factor. Int J Biol Macromol. 2020;151:1133–8.

    CAS  PubMed  Google Scholar 

  23. Xu H, Kou F, Ye H, Wang Z, Huang S, Liu X, et al. Highly sensitive antibody–aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator. Talanta. 2017;175:177–82.

    CAS  PubMed  Google Scholar 

  24. Wu W, Li J, Pan D, Li J, Song S, Rong M, et al. Gold nanoparticle–based enzyme–linked antibody–aptamer sandwich assay for detection of salmonella typhimurium. ACS Appl Mater Interfaces. 2014;6:16974–81.

    CAS  PubMed  Google Scholar 

  25. Hosseini Ghalehno M, Mirzaei M, Torkzadeh-Mahani M. Electrochemical aptasensor for tumor necrosis factor α using aptamer–antibody sandwich structure and cobalt hexacyanoferrate for signal amplification. J Iran Chem Soc. 2019;16:1783–91.

    CAS  Google Scholar 

  26. Zhou L, Ou LJ, Chu X, Shen GL, Yu RQ. Aptamer–based rolling circle amplification: a platform for electrochemical detection of protein. Anal Chem. 2007;79:7492–500.

    CAS  PubMed  Google Scholar 

  27. Teng J, Ye Y, Yao L, Yan C, Cheng K, Xue F, et al. Rolling circle amplification based amperometric aptamer/immuno hybrid biosensor for ultrasensitive detection of Vibrio parahaemolyticus. Microchim Acta. 2017;184:3477–85.

    CAS  Google Scholar 

  28. Niemeyer CM, Adler M, Wacker R. Immuno–PCR: high sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnol. 2005;23:208–16.

    CAS  PubMed  Google Scholar 

  29. Zhu X, Kou F, Xu H, Lin L, Yang G, Lin Z. A highly sensitive aptamer–immunoassay for vascular endothelial growth factor coupled with portable glucose meter and hybridization chain reaction. Sensors Actuators B Chem. 2017;253:660–5.

    CAS  Google Scholar 

  30. Sun H, Yao F, Su Z, Kang XF. Hybridization chain reaction (HCR) for amplifying nanopore signals. Biosens Bioelectron. 2020;150:111906.

    CAS  PubMed  Google Scholar 

  31. Jia LP, Zhao RN, Wang LJ, Ma RN, Zhang W, Shang L, et al. Aptamer based electrochemical assay for protein kinase activity by coupling hybridization chain reaction. Biosens Bioelectron. 2018;117:690–5.

    CAS  PubMed  Google Scholar 

  32. Yang W, Ozsoz M, Hibbert DB, Gooding JJ. Evidence for the direct interaction between methylene blue and guanine bases using DNA–modified carbon paste electrodes. Electroanalysis. 2002;14:1299–302.

    CAS  Google Scholar 

  33. Wain AJ, Zhou F. Scanning electrochemical microscopy imaging of DNA microarrays using methylene blue as a redox–active intercalator. Langmuir. 2008;24:5155–60.

    CAS  PubMed  Google Scholar 

  34. Rafiee-Pour HA, Behpour M, Keshavarz M. A novel label–free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA–21. Biosens Bioelectron. 2016;77:202–7.

    CAS  PubMed  Google Scholar 

  35. **g X, Cao X, Wang L, Lan T, Li Y, **e G. DNA–AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening. Biosens Bioelectron. 2014;58:40–7.

    CAS  PubMed  Google Scholar 

  36. Wang J, Wang L, Di J, Tu Y. Disposable biosensor based on immobilization of glucose oxidase at gold nanoparticles electrodeposited on indium tin oxide electrode. Sensors Actuators B Chem. 2008;135:283–8.

    CAS  Google Scholar 

  37. Lu S, Hu T, Wang S, Sun J, Yang X. Ultra–sensitive colorimetric assay system based on the hybridization chain reaction–triggered enzyme cascade amplification. ACS Appl Mater Interfaces. 2017;9:167–75.

    CAS  PubMed  Google Scholar 

  38. Liu P, Yang X, Sun S, Wang Q, Wang K, Huang J, et al. Enzyme–free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal Chem. 2013;85:7689–95.

    CAS  PubMed  Google Scholar 

  39. Chen F, Liu Y, Chen C. Respective and simultaneous detection tumor markers CA125 and STIP1 using aptamer–based fluorescent and RLS sensors. Sensors Actuators B Chem. 2017;245:470–6.

    CAS  Google Scholar 

  40. Samadi Pakchin P, Ghanbari H, Saber R, Omidi Y. Electrochemical immunosensor based on chitosan–gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125. Biosens Bioelectron. 2018;122:68–74.

    CAS  PubMed  Google Scholar 

  41. Wu L, Sha Y, Li W. One–step preparation of disposable multi–functionalized g–C3N4 based electrochemiluminescence immunosensor for the detection of CA125. Sensors Actuators B Chem. 2016;226:62–8.

    CAS  Google Scholar 

  42. Raghav R, Srivastava S. Core–shell gold–silver nanoparticles based impedimetric immunosensor for cancer antigen CA125. Sensors Actuators B Chem. 2015;220:557–64.

    CAS  Google Scholar 

  43. Hamd-Ghadareh S, Salimi A, Fathi F, Bahrami S. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio–applications in labeling, imaging and sensing. Biosens Bioelectron. 2017;96:308–16.

    CAS  PubMed  Google Scholar 

  44. ** H, Gui R, Gong J, Huang W. Aptamer and 5–fluorouracil dual–loading Ag2S quantum dots used as a sensitive label–free probe for near–infrared photoluminescence turn–on detection of CA125 antigen. Biosens Bioelectron. 2017;92:378–84.

    CAS  PubMed  Google Scholar 

  45. Ravalli A, Pilon Dos Santos G, Ferroni M. New label free CA125 detection based on gold nanostructured screen–printed electrode. Sensors Actuators B Chem. 2013;179:194–200.

    CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (No. 2017PY024 and No. 2018PY022), the Zhejiang Provincial Natural Science Foundation of China (LQ19H090019), and the Public Welfare from the Science and Technology Department of Zhejiang Province (No. 2017C33201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingsong Lu.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in this study involving human participants were in accordance with the ethical standards of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards, and were approved by the Ethical Committee of Hangzhou First People’s Hospital. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Liu, B., Leng, J. et al. Electrochemical mixed aptamer-antibody sandwich assay for mucin protein 16 detection through hybridization chain reaction amplification. Anal Bioanal Chem 412, 7169–7178 (2020). https://doi.org/10.1007/s00216-020-02849-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02849-5

Keywords

Navigation