Log in

Microfluidic chip-photothermal lens microscopy for DNA hybridization assay using gold nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new approach employing a microchip in combination with photothermal lens microscopy has been described for a DNA hybridization assay using gold nanoparticles. The difference in adsorption propensities of single- and double-stranded DNAs on gold nanoparticles was used for a highly sensitive DNA hybridization assay through a photothermal lens effect in a femtoliter scale of detection volume. Under the optimized conditions, the results showed that the variation of photothermal lens signal in the focal volume of 105 fL (10−15 L) was linearly proportional to the target DNA concentration over the range of 50–500 nM with detection limits of 30.7 nM and 27.3 nM for target DNA I and II, respectively. The lowest amount of target DNA that was measured using gold nanoparticles was 2.6 zepto mole. The assay was completed within 5 min and the relative standard deviations (n = 8) for both target DNAs were about 2.34%. The hybridization process was proved by two different common methods including gel electrophoresis and in situ fluorescence monitoring of DNA hybridization. The performance of this detection method was investigated in diluted human serum sample as a complex sample. The recovery values were between 98 and 104.9%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wan Y, Xu L, Zhuo N, Lu X. A novel DNA sensor based on C60NPs-PAMAM-PtPNPs to detect VKORC1 gene for guiding rational clinical therapy with warfarin. Anal Chim Acta. 2018;1009:39–47.

    Article  CAS  Google Scholar 

  2. Chen X, Roozbahani G M, Ye Z, Zhang Y, Ma R, **ang J, et al. Label-free detection of DNA mutations by nanopore analysis. ACS Appl Mater Interfaces. 2018;10(14):11519–28.

    Article  CAS  Google Scholar 

  3. Ho NRY, Lim GS, Sundah NR, Lim D, Loh TP, Shao H. Visual and modular detection of pathogen nucleic acids with enzyme–DNA molecular complexes. Nat Commun. 2018;9(1):3238. https://doi.org/10.1038/s41467-018-05733-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borghei Y-S, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R. Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal Chim Acta. 2016;904:92–7.

    Article  CAS  Google Scholar 

  5. Saikrishnan D, Goyal M, Rossiter S, Kukol A. A cellulose-based bioassay for the colorimetric detection of pathogen DNA. Anal Bioanal Chem. 2014;406(30):7887–98.

    Article  CAS  Google Scholar 

  6. Zhang Y, Ning X, Mao G, Ji X, He Z. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching. Anal Bioanal Chem. 2018;410(13):3209–16.

    Article  CAS  Google Scholar 

  7. Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc. 2003;125(38):11474–5.

    Article  CAS  Google Scholar 

  8. El-Yazbi AF, Wong A, Loppnow GR. A luminescent probe of mismatched DNA hybridization: location and number of mismatches. Anal Chim Acta. 2017;994:92–9.

    Article  CAS  Google Scholar 

  9. Silvestrini M, Ugo P. Ensembles of nanoelectrodes modified with gold nanoparticles: characterization and application to DNA-hybridization detection. Anal Bioanal Chem. 2013;405(2–3):995–1005.

    Article  CAS  Google Scholar 

  10. Shamsipur M, Memari Z, Ganjali MR, Norouzi P, Faridbod F. Highly sensitive gold nanoparticles-based optical sensing of DNA hybridization using bis (8-hydroxyquinoline-5-solphonate) cerium (III) chloride as a novel fluorescence probe. J Pharm Biomed Anal. 2016;118:356–62.

    Article  CAS  Google Scholar 

  11. Li Z-P, Liu C-H, Fan Y-S, Duan X-R. Chemiluminescent detection of DNA hybridization using gold nanoparticles as labels. Anal Bioanal Chem. 2007;387(2):613–8.

    Article  CAS  Google Scholar 

  12. Campuzano S, Yáñez-Sedeño P, **arrón JM. Nanoparticles for nucleic-acid-based biosensing: opportunities, challenges, and prospects. Anal Bioanal Chem. 2019: 411(9):1791-806.

  13. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–79.

    Article  CAS  Google Scholar 

  14. Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012;112(5):2739–79.

    Article  CAS  Google Scholar 

  15. Huang C-C, Chen C-T, Shiang Y-C, Lin Z-H, Chang H-T. Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of Concanavalin A and Escherichia coli. Anal Chem. 2009;81(3):875–82.

    Article  CAS  Google Scholar 

  16. Gao Z, Qiu Z, Lu M, Shu J, Tang D. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5′-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes. Biosens Bioelectron. 2017;89:1006–12.

    Article  CAS  Google Scholar 

  17. Fong KE, L-YL Y. Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale. 2013;5(24):12043–71.

    Article  CAS  Google Scholar 

  18. **a F, Zuo X, Yang R, **ao Y, Kang D, Vallée-Bélisle A, et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A. 2010;107(24):10837–41.

    Article  CAS  Google Scholar 

  19. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382(6592):607.

    Article  CAS  Google Scholar 

  20. Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc. 2003;125(27):8102–3.

    Article  CAS  Google Scholar 

  21. Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A. 2004;101(39):14036–9.

    Article  CAS  Google Scholar 

  22. Watson JD. The double helix: a personal account of the discovery of the structure of DNA. New York: Atheneum; 1968.

    Google Scholar 

  23. Liu P, Yang X, Sun S, Wang Q, Wang K, Huang J, et al. Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal Chem. 2013;85(16):7689–95.

    Article  CAS  Google Scholar 

  24. Quinten M, Kreibig U. Optical properties of aggregates of small metal particles. Surf Sci. 1986;172(3):557–77.

    Article  CAS  Google Scholar 

  25. Li PC. Microfluidic lab-on-a-chip for chemical and biological analysis and discovery. Boca Raton: CRC Press; 2005.

    Book  Google Scholar 

  26. Gösch M, Blom H, Holm J, Heino T, Rigler R. Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy. Anal Chem. 2000;72(14):3260–5.

    Article  Google Scholar 

  27. Shokoufi N, Madarshahian S. Thermal lens spectrometry: techniques and instrumentation. Saarbrücken: LAP Lambert Academic Publishing; 2012.

    Google Scholar 

  28. Bialkowski S. Photothermal spectroscopy methods for chemical analysis. Hoboken: Wiley; 1996.

    Book  Google Scholar 

  29. Lv S, Zhang K, Tang D. New visual immunoassay for prostate-specific antigen using near-infrared exciting CuxS nanocrystals and imaging on smartphone. Analyst. 2019;144(12):3716–20.

    Article  CAS  Google Scholar 

  30. Liu M. A flexible thermal lens microscope for highly sensitive detection in microfluidic chips. Laser Phys Lett. 2017;14(8):085701.

    Article  Google Scholar 

  31. Satoa K, Kitamorib T. Integration of an immunoassay system into a microchip for high-throughput assay. J Nanosci Nanotechnol. 2004;4(6):575–9.

    Article  Google Scholar 

  32. Radovanović T, Liu M, Likar P, Klemenc M, Franko M. Microfluidic flow injection analysis with thermal lens microscopic detection for determination of NGAL. Int J Thermophys. 2015;36(5–6):932–9.

    Article  Google Scholar 

  33. Yamaoka S, Kataoka Y, Kazama Y, Fujii Y, Hibara A. Efficient thermal lens nanoparticle detection in a flow-focusing microfluidic device. Sensors Actuators B Chem. 2016;228:581–6.

    Article  CAS  Google Scholar 

  34. Shokoufi N, Asbaghi BAN, Hajibaba SN. Sensitive determination of DNA based on phosphate-dye interaction using photothermal lens technique. Appl Opt. 2019;58(12):3074–82.

    Article  Google Scholar 

  35. Cedeño E, Cabrera H, Delgadillo-López A, Delgado-Vasallo O, Mansanares A, Calderón A, et al. High sensitivity thermal lens microscopy: Cr-VI trace detection in water. Talanta. 2017;170:260–5.

    Article  Google Scholar 

  36. Kitamori T, Tokeshi M, Hibara A, Sato K. Peer reviewed: thermal lens microscopy and microchip chemistry. Washington, DC: ACS Publications; 2004.

    Google Scholar 

  37. Liu M, Malovrh S, Franko M. Microfluidic flow-injection thermal-lens microscopy for high-throughput and sensitive analysis of sub-μL samples. Anal Methods. 2016;8(25):5053–60.

    Article  CAS  Google Scholar 

  38. Abbasi-Ahd A, Shokoufi N, Kargosha K. Headspace single-drop microextraction coupled to microchip-photothermal lens microscopy for highly sensitive determination of captopril in human serum and pharmaceuticals. Microchim Acta. 2017;184(7):2403–9.

    Article  CAS  Google Scholar 

  39. Burgos E, Thompson C, Giordano M, Thomas MA. Pre-breeding studies in Panicum coloratum var. coloratum: characterization using agro-morphological traits and molecular markers. Trop Grassl-Forrajes Trop. 2018;6(2):82–92.

    Article  Google Scholar 

  40. Zhang F, Zeng L, Zhang Y, Wang H, Wu A. A colorimetric assay method for Co 2+ based on thioglycolic acid functionalized hexadecyl trimethyl ammonium bromide modified Au nanoparticles (NPs). Nanoscale. 2011;3(5):2150–4.

    Article  CAS  Google Scholar 

  41. Shokoufi N, Abbasi-Ahd A, Kargosha K. Laser induced thermal lens microscopy for highly sensitive determination of captopril. Appl Opt. 2017;56(11):E58–63.

    Article  CAS  Google Scholar 

  42. Henry CS. Microchip capillary electrophoresis: methods and protocols. Berlin: Springer Science & Business Media; 2006.

    Book  Google Scholar 

  43. Abbasi-Ahd A, Shokoufi N, Adeleh S, Kargosha K. Femtoliter scale detection of an antithyroid drug using gold nanoparticles in a microfluidic chip. J Braz Chem Soc. 2017;28(10):1843–9.

    CAS  Google Scholar 

  44. Abbasi-Ahd A, Shokoufi N, Kargosha K. Molecular counting of captopril by a microfluidic chip-thermal lens microscopy system. Curr Anal Chem. 2017;13(6):508–14.

    Article  CAS  Google Scholar 

  45. Tokeshi M, Yamaguchi J, Hattori A, Kitamori T. Thermal lens micro optical systems. Anal Chem. 2005;77(2):626–30.

    Article  CAS  Google Scholar 

  46. Tamaki E, Hibara A, Tokeshi M, Kitamori T. Microchannel-assisted thermal-lens spectrometry for microchip analysis. J Chromatogr A. 2003;987(1–2):197–204.

    Article  CAS  Google Scholar 

  47. Smirnova A, Proskurnin MA, Mawatari K, Kitamori T. Desktop near-field thermal-lens microscope for thermo-optical detection in microfluidics. Electrophoresis. 2012;33(17):2748–51.

    Article  CAS  Google Scholar 

  48. Liu M, Novak U, Plazl I, Franko M. Optimization of a thermal lens microscope for detection in a microfluidic chip. Int J Thermophys. 2014;35(11):2011–22.

    Article  CAS  Google Scholar 

  49. Kikutani Y, Mawatari K, Katayama K, Tokeshi M, Fukuzawa T, Kitaoka M, et al. Flowing thermal lens micro-flow velocimeter. Sensors Actuators B Chem. 2008;133(1):91–6.

    Article  CAS  Google Scholar 

  50. Tokeshi M, Uchida M, Uchiyama K, Sawada T, Kitamori T. Single-and countable-molecule detection of non-fluorescent molecules in liquid phase. J Lumin. 1999;83:261–4.

    Article  Google Scholar 

  51. Shokoufi N, Abbasi-Ahd A, Madarshahian S. Online monitoring of gold nanoparticles and induced aggregation by photothermal lens microscopy. Instrum Sci Technol. 2018;46(1):93–101.

    Article  CAS  Google Scholar 

  52. Zeng Y, Zhang D, Qi P, Zheng L. Colorimetric detection of DNA by using target catalyzed DNA nanostructure assembly and unmodified gold nanoparticles. Microchim Acta. 2017;184(12):4809–15.

    Article  CAS  Google Scholar 

  53. Zhou W, Ren J, Zhu J, Zhou Z, Dong S. Accurate and visual discrimination of single-base mismatch by utilization of binary DNA probes in gold nanoparticles-based biosensing strategy. Talanta. 2016;161:528–34.

    Article  CAS  Google Scholar 

  54. Nourisaeid E, Mousavi A, Arpanaei A. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes. Physica E Low Dimens Syst Nanostruct. 2016;75:188–95.

Download references

Acknowledgments

The authors are grateful to the support from the Research Council of Chemistry & Chemical Engineering Research Center of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Shokoufi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokoufi, N., Abbasgholi Nejad Asbaghi, B. & Abbasi-Ahd, A. Microfluidic chip-photothermal lens microscopy for DNA hybridization assay using gold nanoparticles. Anal Bioanal Chem 411, 6119–6128 (2019). https://doi.org/10.1007/s00216-019-01999-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01999-5

Keywords

Navigation