Log in

3D visualization of the microstructure of Quedius beesoni Cameron using micro-CT

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The investigation of the internal morphology of insects is usually performed using classical microtomy yielding optical micrographs of stained thin sections. The achievement of high-quality cross sections for microtomy is time-consuming and the risk of damaging sections is unavoidable. Moreover, the approach is impractical, in particular when quick acquisition of 3D structural information is required. Recently, X-ray computed microtomography (micro-CT) with a high spatial resolution was considered as a potential tool for the morphological classification of insects. We used micro-CT to investigate Quedius beesoni Cameron at the cellular length scale. This method provides a new powerful and nondestructive approach to obtain 3D structural information on the biological organization of insects. The preliminary images presented in this contribution clearly reveal the endoskeleton and the muscles of the head and the thorax with a full 3D structure. We also reconstructed the 3D structure of the brain of Quedius beesoni Cameron, and this is the first reconstruction in Staphylinidae, which will be a great advancement for morphological and phylogenic research. We claim that both the spatial resolution and the contrast characteristic of micro-CT imaging may fulfill the requirements necessary for zoological insect morphology and phylogeny, in particular, when a classification of a rare and unique insect specimen is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hounsfield G (1973) Br J Radiol 46:1016

    Article  CAS  Google Scholar 

  2. Peyrina F, Salomea M, Cloetensb P et al (1998) Technol Health Care 6:391–401

    Google Scholar 

  3. Holdsworth D, Thornton M (2002) Trends Biotechnol 20:34–39

    Article  Google Scholar 

  4. Betz O, Thayer M, Newton A (2003) Acta Zool 84:179–238

    Article  Google Scholar 

  5. Jorgensen S, Demirkaya O, Ritman E (1998) Am J Physiol Heart Circ Physiol 275:H1103

    CAS  Google Scholar 

  6. Herman L (2001) Catalog of the Staphylinidae (Insecta: Coleoptera): 1758 to the end of the second millennium. American Museum of Natural History, New York

    Google Scholar 

  7. Blackwelder R (1936) Smithson Misc Collect 94:1–102

    Google Scholar 

  8. Naomi S (1987) Jpn J Entomol 55:450–458

    Google Scholar 

  9. Naomi S (1989) Jpn J Entomol 57:82–90

    Google Scholar 

  10. Betz O (1996) Zoomorphology 116:15–34

    Article  Google Scholar 

  11. Kölsch G, Betz O (1998) Zoomorphology 118:263–272

    Article  Google Scholar 

  12. Gorb S, Beutel R (2000) J Morphol 244:1–14

    Article  CAS  Google Scholar 

  13. Hörnschemeyer T, Beutel R, Pasop F (2002) J Morphol 252:298–314

    Article  Google Scholar 

  14. Beutel R, Ge S, Hörnschemeyer T (2008) Cladistics 24:270–298

    Article  Google Scholar 

  15. Weide D, Betz O (2009) J Morphol 270:1503–1523

    Article  Google Scholar 

  16. Zhu PP, Wang JY, Yuan QX et al (2005) Appl Phys Lett 87:264101–264103

    Article  Google Scholar 

  17. Wang J, Zhu P, Yuan Q et al (2006) Phys Med Biol 51:3391–3396

    Article  Google Scholar 

  18. Chapman D, Thomlinson W, Johnston R et al (1997) Phys Med Biol 42:2015–2026

    Article  CAS  Google Scholar 

  19. Momose A (2002) J Synchrotron Radiat 9:136–142

    Article  Google Scholar 

  20. Wilkins S, Gureyev T, Gao D et al (1996) Nature 384:335–338

    Article  CAS  Google Scholar 

  21. Davis T, Gao D, Gureyev T et al (1995) Nature 373:595–598

    Article  CAS  Google Scholar 

  22. Gureyev TE, Mayo S, Wilkins SW et al (2001) Phys Rev Lett 86:5827

    Article  CAS  Google Scholar 

  23. Chao W, Harteneck B, Liddle J et al (2005) Nature 435:1210–1213

    Article  CAS  Google Scholar 

  24. Wieland M, Wilhein T, Spielmann C et al (2003) Appl Phys B Lasers Opt 76:885–889

    Article  CAS  Google Scholar 

  25. Cloetens P, Barrett R, Baruchel J et al (1996) J Phys D Appl Phys 29:133–146

    Article  CAS  Google Scholar 

  26. Lewis R (1997) Phys Med Biol 42:1213–1243

    Article  CAS  Google Scholar 

  27. Kron T (1998) Phys Med Biol 43:215–216

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Outstanding Youth Fund (project no. 10125523 to Z.W.), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N42), the Key Important Project of the National Natural Science Foundation of China (10734070), the National Natural Science Foundation of China (NSFC 10774144 and 10979055), and the National Basic Research Program of China (2009CB930804).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongzhang Zhou or Ziyu Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Li, De., Zhu, P. et al. 3D visualization of the microstructure of Quedius beesoni Cameron using micro-CT. Anal Bioanal Chem 397, 2143–2148 (2010). https://doi.org/10.1007/s00216-010-3696-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3696-6

Keywords

Navigation