Log in

Determination of protein surface excess on a liquid/solid interface by single-molecule counting

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Determination of protein surface excess is an important way of evaluating the properties of biomaterials and the characteristics of biosensors. A single-molecule counting method is presented that uses a standard fluorescence microscope to measure coverage of a liquid/solid interface by adsorbed proteins. The extremely low surface excess of lysozyme and bovine serum albumin (BSA), in a bulk concentration range from 0.3 nmol L−1 (0.02 μg mL−1) to 3 nmol L−1 (0.2 μg mL−1), were measured by recording the counts of spatially isolated single molecules on either hydrophilic (glass) or hydrophobic (polydimethylsiloxane, PDMS) surfaces at different pH. The differences observed in amounts of adsorbed proteins under different experimental conditions can be qualitatively explained by the combined interactions of electrostatic and hydrophobic forces. This, in turn, implies that single-molecule counting is an effective way of measuring surface coverage at a liquid/solid interface.

Adsorption fraction of proteins on different surfaces changed with pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakanishi K, Sakiyama T, Imamura K (2001) J Biosci Bioeng 91:233–244

    Article  CAS  Google Scholar 

  2. Cohen AE, Moerner WE (2006) Proc Natl Acad Sci USA 103:4362–4365

    Article  CAS  Google Scholar 

  3. Yu J, **a J, Ren XJ, Lao KQ, **e XS (2006) Science 311:1600–1603

    Article  CAS  Google Scholar 

  4. Bates M, Huang B, Dempsey GT, Zhuang XW (2007) Science 317:1749–1753

    Article  CAS  Google Scholar 

  5. Dickson RM, Norris DJ, Tzeng YL, Moerner WE (1996) Science 274:966–969

    Article  CAS  Google Scholar 

  6. Gai HW, Li Y, Silber-Li ZH, Ma YF, Lin BC (2005) Lab Chip 5:443–449

    Article  CAS  Google Scholar 

  7. Gai HW, Stayton I, Liu X, Lin BC, Ma YF (2007) Trends Anal Chem 26:980–992

    Article  Google Scholar 

  8. Roach P, Farrar D, Perry CC (2005) J Am Chem Soc 127:8168–8173

    Article  CAS  Google Scholar 

  9. Roach P, Farrar D, Perry CC (2006) J Am Chem Soc 128:3939–3945

    Article  CAS  Google Scholar 

  10. Glomm WR, Halskau O, Hanneseth AMD, Volden S (2007) J Phys Chem B 111:14329–14345

    Article  CAS  Google Scholar 

  11. McClellan SJ, Franses EI (2005) Colloids Surf A 260:265–275

    Article  CAS  Google Scholar 

  12. Kim G, Gurau M, Kim J, Cremer PS (2002) Langmuir 18:2807–2811

    Article  CAS  Google Scholar 

  13. Su TJ, Lu JR, Thomas RK, Cui ZF (1999) J Phys Chem B 103:3727–3736

    Article  CAS  Google Scholar 

  14. Lu JR, Su TJ, Howlin BJ (1999) J Phys Chem B 103:5903–5909

    Article  CAS  Google Scholar 

  15. Su TJ, Lu JR, Thomas RK, Cui ZF, Penfold J (1998) J Phys Chem B 102:8100–8108

    Article  CAS  Google Scholar 

  16. Su TJ, Lu JR, Thomas RK, Cui ZF, Penfold J (1998) Langmuir 14:438–445

    Article  CAS  Google Scholar 

  17. Lu JR, Su TJ, Thirtle PN, Thomas RK, Rennie AR, Cubitt R (1998) J Colloid Interf Sci 206:212–223

    Article  CAS  Google Scholar 

  18. McGuire J, Wahlgren MC, Arnebrant T (1995) J Colloid Interf Sci 170:182–192

    Article  CAS  Google Scholar 

  19. Yeung ES (2004) Annu Rev Phys Chem 55:97–126

    Article  CAS  Google Scholar 

  20. Xu XHN, Yeung ES (1998) Science 281:1650–1653

    Article  CAS  Google Scholar 

  21. Kang SH, Yeung ES (2002) Anal Chem 74:6334–6339

    Article  CAS  Google Scholar 

  22. Fang N, Zhang H, Li JW, Li HW, Yeung ES (2007) Anal Chem 79:6047–6054

    Article  CAS  Google Scholar 

  23. Kwok KC, Yeung KM, Cheung NH (2007) Langmuir 23:1948–1952

    Article  CAS  Google Scholar 

  24. Li L, Tian XZ, Zou GZ, Shi ZK, Zhang XL, ** WR (2008) Anal Chem 80:3999–4006

    Article  CAS  Google Scholar 

  25. Gai HW, Griess GA, Demeler B, Weintraub ST, Serwer P (2007) J Microscopy 226:256–262

    Article  CAS  Google Scholar 

  26. Unger M, Kartalov E, Chiu CS, Lester HA, Quake SR (1999) Biotechniques 27:1008–1009

    Google Scholar 

  27. Salim M, O'Sullivan B, McArthur SL, Wright PC (2007) Lab Chip 7:64–70

    Article  CAS  Google Scholar 

  28. Janasek D, Franzke J, Manz A (2006) Nature 442:374–380

    Article  CAS  Google Scholar 

  29. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung WY, Haugland RP (1999) J Histochem Cytochem 47:1179–1188

    CAS  Google Scholar 

  30. Han R, Zhang YW, Dong XL, Gai HW, Yeung ES (2008) Anal Chim Acta 619:209–214

    Article  CAS  Google Scholar 

  31. Gai HW, Wang Q, Ma YF, Lin BC (2005) Angew Chem Int Ed 44:5107–5110

    Article  CAS  Google Scholar 

  32. Su TJ, Lu JR, Thomas RK, Cui ZF, Penfold J (1998) J Colloid Interf Sci 203:419–429

    Article  CAS  Google Scholar 

  33. Cardamone M, Puri NK (1992) Biochem J 282:589–593

    CAS  Google Scholar 

  34. Israelachvili J, Pashley R (1982) Nature 300:341–342

    Article  CAS  Google Scholar 

  35. van Oss CJ (2003) J Mol Recognit 16:177–190

    Article  Google Scholar 

  36. Menon MK, Zydney AL (1998) Anal Chem 70:1581–1584

    Article  CAS  Google Scholar 

  37. Bohme U, Scheler U (2007) Chem Phys Lett 435:342–345

    Article  Google Scholar 

  38. Larsen AE, Grier DG (1997) Nature 385:230–233

    Article  CAS  Google Scholar 

  39. Claesson PM, Blomberg E, Froberg JC, Nylander T, Arnebrant T (1995) Adv Colloid Interf Sci 57:161–227

    Article  CAS  Google Scholar 

  40. Buijs J, Hlady V (1997) J Colloid Interf Sci 190:171–181

    Article  CAS  Google Scholar 

  41. Hillborg H, Tomczak N, Olah A, Schonherr H, Vancso GJ (2004) Langmuir 20:785–794

    Article  CAS  Google Scholar 

  42. ** MH, Feng XJ, ** JM, Zhai J, Cho KW, Feng L, Jiang L (2005) Macromol Rapid Commun 26:1805–1809

    Article  CAS  Google Scholar 

  43. Wu DP, Luo Y, Zhou XM, Dai ZP, Lin BC (2005) Electrophoresis 26:211–218

    Article  CAS  Google Scholar 

  44. Wu DP, Zhao BX, Dai ZP, Qin JH, Lin BC (2006) Lab Chip 6:942–947

    Article  CAS  Google Scholar 

  45. Ocvirk G, Munroe M, Tang T, Oleschuk R, Westra K, Harrison DJ (2000) Electrophoresis 21:107–115

    Article  CAS  Google Scholar 

  46. Spehar AM, Koster S, Linder V, Kulmala S, de Rooij NF, Verpoorte E, Sigrist H, Thormann W (2003) Electrophoresis 24:3674–3678

    Article  CAS  Google Scholar 

  47. Tsutsui T, Lichan E, Nakai S (1986) J Food Sci 51:1268–1272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Science Foundation of China (NSFC, 20705007, 30570479, 30670532) and the Hunan University “985” Fund for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Gai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Tang, H., Gai, H. et al. Determination of protein surface excess on a liquid/solid interface by single-molecule counting. Anal Bioanal Chem 394, 1879–1885 (2009). https://doi.org/10.1007/s00216-009-2888-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2888-4

Keywords

Navigation