Log in

Spectroscopic and voltammetric studies of Pefloxacin bound to calf thymus double-stranded DNA

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Spectral and electrochemical studies have been carried out on the interaction of pefloxacin with calf thymus double-stranded dsDNA. The voltammetric behavior of pefloxacin was investigated at glassy carbon, carbon paste and dsDNA-modified carbon paste electrodes using cyclic voltammetry. Pefloxacin was oxidized, yielding one irreversible oxidation peak. The modification of the carbon paste surface with dsDNA allowed an accumulation process to take place for pefloxacin such that higher sensitivity was achieved compared with the bare surface. The response was characterized with respect to ionic strength, accumulation time, pefloxacin concentration, and other variables. The strip** differential pulse voltammetric response showed a linear calibration curve in the range 1.0×10−7–1.0×10−5 mol l−1 with a detection limit of 5.0×10−8 mol l−1 at the dsDNA modified electrode. The method was applied to the direct determination of pefloxacin in diluted urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolfson JS, Hooper DC (1989) Clin Microbiol Rev 2:378

    CAS  PubMed  Google Scholar 

  2. Smith JT (1984) Pharm J 233:299

    CAS  Google Scholar 

  3. Shen LL, Pernet AG (1985) Proc Natl Acad Sci USA 82:307

    Google Scholar 

  4. Bailly C, Colson P, Houssier C (1998) Biochem Biophys Res Commun 243:844

    Article  CAS  PubMed  Google Scholar 

  5. Son GS, Yeo JA, Kim JM, Kim SK, Moon HR, Nam W (1998) Biophys Chem 74:225

    Article  CAS  Google Scholar 

  6. Son GS, Yeo JA, Kim JM, Kim SK, Holmen A, Akerman B, Norden B (1998) J Am Chem Soc 120:6451

    Article  CAS  Google Scholar 

  7. Fisher LM, Lawrence JM, Jostly IC, Hopewell R, Margerrison EE, Cullen ME (1989) Am J Med 87:2S

    Article  CAS  Google Scholar 

  8. Fung-Tomc J, Kolek B, Bonner DP (1993) Antimicrob Agents Ch 37:1289

    PubMed  Google Scholar 

  9. Heisig P, Kratz B, Halle E, Graser Y, Altwegg M, Rabsch W, Faber JP (1995) Microb Drug Resist 1:211

    CAS  PubMed  Google Scholar 

  10. Niccolai D, Tarsi L, Thomas RJ (1997) Chem Commun 1997:2333

    Article  Google Scholar 

  11. Hammonds TR, Foster SR, Maxwell A (2000) J Mol Biol 300:481

    Article  CAS  PubMed  Google Scholar 

  12. Fan J-Y, Sun D, Yu H, Kerwin SM, Hurley LH (1995) J Med Chem 38:408

    Google Scholar 

  13. Palu G, Valisena S, Ciarrocchi G, Gatto B, Palumbo M (1992) Proc Natl Acad Sci USA 89:9671

    Google Scholar 

  14. Sissi C, Andreolli M, Cecchetti V, Fravolini A, Gatto B, Palumbo M (1998) Bioorg Med Chem 6:1555

    Article  CAS  PubMed  Google Scholar 

  15. Sissi C, Perdona E, Domenici E, Feriani A, Howells AJ, Maxwell A, Palumbo M (2001) J Mol Biol 311:195

    Article  CAS  PubMed  Google Scholar 

  16. Abanmi N, Zaghloul I, El-Sayed N, Al-Khamis KI (1996) Ther Drug Monit 18:158

    Article  CAS  PubMed  Google Scholar 

  17. Lacarelle B, Le-Guellec C, Morel A, Albanese J, Alazia M, Ballereau M, Llurens M, Bruno R, Francois G, Durand A (1994) Ther Drug Monit 16:209

    CAS  PubMed  Google Scholar 

  18. Chan CY, Lam AW, French GL (1989) J Antimicrob Chemoth 23:597

    Google Scholar 

  19. Montay G, Tassel JP (1985) J Chromatogr–Biomed 40:214

    Google Scholar 

  20. Veiopoulou CJ, Ioannou PC, Lianidou (1997) J Pharm Biomed Anal 15:1839

    Google Scholar 

  21. Jelikic-Stankov M, Stankov D, Djurdjevic P (1999) Pharmazie 54:73

    CAS  PubMed  Google Scholar 

  22. Beltagi AM (2003) J Pharm Biomed Anal 31:1079

    Google Scholar 

  23. Marmur J (1961) J Mol Biol 3:208

    CAS  Google Scholar 

  24. Mohler HR, Kline B, Mehrotva BD (1964) J Mol Biol 9:801

    Google Scholar 

  25. Wang J, Cai X, Jonsson C, Balakrishnan M (1996) Electroanal 8:20

    CAS  Google Scholar 

  26. Pyle AM, Rehmann JP, Meshoyer R, Kumar CV, Turro NJ, Barton JK (1989) J Am Chem Soc 111:3051

    CAS  Google Scholar 

  27. Radi A, EL-Ries MA, Kandil S (2003) Anal Chim Acta 495:61

    Article  CAS  Google Scholar 

  28. Drakopoulos AI, Ioannou PC (1997) Anal Chim Acta 332:197

    Article  Google Scholar 

  29. Takacs-Novak K, Noszal B, Hermecz I, Kereszturi G, Rodanyi B, Szasz G (1990) J Pharm Sci 79:1023

    CAS  PubMed  Google Scholar 

  30. Miller JC, Miller JN (1993) Statistics for analytical chemistry. Ellis Horwood (Prentice Hall), NY, p 119

    Google Scholar 

  31. Naber KG, Theuretzbacher U, Kinzig M, Savov O, Sorgel F (1998) Antimicrob Agents Ch 42:1659

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Radi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radi, A., Ries, M.A.E. & Kandil, S. Spectroscopic and voltammetric studies of Pefloxacin bound to calf thymus double-stranded DNA. Anal Bioanal Chem 381, 451–455 (2005). https://doi.org/10.1007/s00216-004-2882-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2882-9

Keywords

Navigation