Log in

Quenching of reactive species by Avenanthramides: theoretical insight to the thermodynamics of electron transfer

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Avenanthramides (AVs) are the phytochemicals found in cereals exclusively in oats. These are widely known natural substances that have antioxidant properties. The free radical deactivation potential of the eight AVs against five reactive species has been studied in physiological pH. At physiological pH, the radical quenching processes were studied using the sequential proton loss followed by electron transfer (SPLET) from the phenolic hydroxyl groups. Using density functional theory (DFT) computations, theoretical studies have been carried out in the gas phase and aqueous solution at M06-2X/6-31 + G (d,p) level of theory. The free radical scavenging ability of the studied AVs was analyzed by using conceptual density functional theory-based parameters and electrostatic potential analysis. By examining the hydrogen atom and electron affinities of each reactive species, the relative destructive potential of each has been compared. The electron transfer capabilities between the studied compound and reactive species were identified by utilizing the ionization energy and electron affinity plots. Additionally, by calculating the redox potentials and equilibrium constants for the entire process in the aqueous solution, the viability of scavenging the free radical species by selected AVs (both in neutral and mono-deprotonated) has been investigated. From the analysis, the neutral as well as the mono-deprotonated form of AVs are found to scavenge OH and OOH, and NO2 radicals effectively, while they are inefficacious toward the O2•‾ and NO radicals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129. https://doi.org/10.1038/nrd4510

    Article  CAS  PubMed  Google Scholar 

  2. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  3. Dehelean CA, Marcovici I, Soica C, et al (2021) Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 26

  4. Rajan VK, Shameera Ahamed TK, Muraleedharan K (2018) Studies on the UV filtering and radical scavenging capacity of the bitter masking flavanone Eriodictyol. J Photochem Photobiol B Biol 185:254–261. https://doi.org/10.1016/j.jphotobiol.2018.06.017

    Article  CAS  Google Scholar 

  5. Rajan VK, Muraleedharan K (2017) A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid. Food Chem 220:93–99. https://doi.org/10.1016/j.foodchem.2016.09.178

    Article  CAS  PubMed  Google Scholar 

  6. Sumayya PC, Mujeeb VMA, Muraleedharan K (2022) Radical scavenging capacity, UV activity, and molecular docking studies of 2ʹ, 5ʹ, 3, 4-Tetrahydroxychalcone: An insight into the photoprotection. Chem Phys Impact 5:100126. https://doi.org/10.1016/j.chphi.2022.100126

    Article  Google Scholar 

  7. Shameera Ahamed TK, Rajan VK, Sabira K, Muraleedharan K (2019) DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid. Comput Biol Chem 80:66–78. https://doi.org/10.1016/j.compbiolchem.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  8. Ragi C, Muraleedharan K (2023) Antioxidant activity of Hibiscetin and Hibiscitrin: insight from DFT, NCI, and QTAIM. Theor Chem Acc 142:30. https://doi.org/10.1007/s00214-023-02970-5

    Article  CAS  Google Scholar 

  9. Grzesik M, Naparło K, Bartosz G, Sadowska-Bartosz I (2018) Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem 241:480–492. https://doi.org/10.1016/j.foodchem.2017.08.117

    Article  CAS  PubMed  Google Scholar 

  10. Pietta P-G (2000) Flavonoids as Antioxidants. J Nat Prod 63:1035–1042. https://doi.org/10.1021/np9904509

    Article  CAS  PubMed  Google Scholar 

  11. Rajan VK, Ragi C, Muraleedharan K (2019) A computational exploration into the structure, antioxidant capacity, toxicity and drug-like activity of the anthocyanidin “Petunidin.” Heliyon 5:e02115. https://doi.org/10.1016/j.heliyon.2019.e02115

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rajan VK, Hasna CK, Muraleedharan K (2018) The natural food colorant Peonidin from cranberries as a potential radical scavenger—A DFT based mechanistic analysis. Food Chem 262:184–190. https://doi.org/10.1016/j.foodchem.2018.04.074

    Article  CAS  PubMed  Google Scholar 

  13. Pottachola S, Kaniyantavida A, Karuvanthodiyil M (2021) DFT study of structure and radical scavenging activity of natural pigment delphinidin and derivatives. In: Glossman-Mitnik D (ed). IntechOpen, Rijeka, p Ch. 16

  14. Borges Bubols G, da Rocha VD, Medina-Remon A et al (2013) The Antioxidant activity of coumarins and flavonoids. Mini-Reviews Med Chem 13:318–334

    Google Scholar 

  15. Hamadouche S, Ounissi A, Baira K et al (2021) Theoretical evaluation of the antioxidant activity of some stilbenes using the Density Functional Theory. J Mol Struct 1229:129496. https://doi.org/10.1016/j.molstruc.2020.129496

    Article  CAS  Google Scholar 

  16. Gonzalez-Burgos E, Gomez-Serranillos MP (2012) Terpene compounds in nature: a review of their potential antioxidant activity. Curr Med Chem 19:5319–5341

    Article  CAS  PubMed  Google Scholar 

  17. Perrelli A, Goitre L, Salzano AM et al (2018) Biological activities, health benefits, and therapeutic properties of Avenanthramides: From skin protection to prevention and treatment of cerebrovascular diseases. Oxid Med Cell Longev 2018:6015351. https://doi.org/10.1155/2018/6015351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li X, Zhou L, Yu Y et al (2022) The potential functions and mechanisms of oat on cancer prevention: A review. J Agric Food Chem 70:14588–14599. https://doi.org/10.1021/acs.jafc.2c06518

    Article  CAS  PubMed  Google Scholar 

  19. Yu Y, Zhou L, Li X et al (2022) The progress of nomenclature, structure, metabolism, and bioactivities of oat novel phytochemical: Avenanthramides. J Agric Food Chem 70:446–457. https://doi.org/10.1021/acs.jafc.1c05704

    Article  CAS  PubMed  Google Scholar 

  20. Peterson DM, Hahn MJ, Emmons CL (2002) Oat Avenanthramides exhibit antioxidant activities in vitro. Food Chem 79:473–478. https://doi.org/10.1016/S0308-8146(02)00219-4

    Article  CAS  Google Scholar 

  21. Bratt K, Sunnerheim K, Bryngelsson S et al (2003) Avenanthramides in Oats (Avena sativa L.) and structure−antioxidant activity relationships. J Agric Food Chem 51:594–600. https://doi.org/10.1021/jf020544f

    Article  CAS  PubMed  Google Scholar 

  22. Fagerlund A, Sunnerheim K, Dimberg LH (2009) Radical-scavenging and antioxidant activity of Avenanthramides. Food Chem 113:550–556. https://doi.org/10.1016/j.foodchem.2008.07.101

    Article  CAS  Google Scholar 

  23. Zhang T, Shao J, Gao Y et al (2017) Absorption and elimination of oat Avenanthramides in humans after acute consumption of oat cookies. Oxid Med Cell Longev 2017:2056705. https://doi.org/10.1155/2017/2056705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dimberg LH, Theander O, Lingnert H (1993) Avenanthramides–a group of phenolic antioxidants in oats. Cereal Chem 70:637–641

    CAS  Google Scholar 

  25. Sumayya PC, Babu G, Muraleedharan K (2021) Quantum chemical investigation of the antiradical property of avenanthramides, oat phenolics. Heliyon 7:e06125. https://doi.org/10.1016/j.heliyon.2021.e06125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xue Y, Teng Y, Chen M et al (2021) Antioxidant activity and mechanism of Avenanthramides: Double H+/e– processes and role of the catechol, guaiacyl, and carboxyl groups. J Agric Food Chem 69:7178–7189. https://doi.org/10.1021/acs.jafc.1c01591

    Article  CAS  PubMed  Google Scholar 

  27. Purushothaman A, Jishnu Gopal P, Janardanan D (2022) Mechanistic insights on the radical scavenging activity of oat avenanthramides. J Phys Org Chem 35:e4391. https://doi.org/10.1002/poc.4391

    Article  CAS  Google Scholar 

  28. Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017:8416763. https://doi.org/10.1155/2017/8416763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharifi-Rad M, Anil Kumar N V, Zucca P, et al. (2020) Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases . Front. Physiol. 11

  30. Mellon I (2004) Transcription-coupled DNA repair, overview. In: Lennarz WJ, Lane MDBT-E of BC (eds). Elsevier, New York, pp 204–208

  31. Islam BU, Habib S, Ahmad P et al (2015) Pathophysiological role of peroxynitrite induced DNA damage in human diseases: A special focus on Poly(ADP-ribose) Polymerase (PARP). Indian J Clin Biochem 30:368–385. https://doi.org/10.1007/s12291-014-0475-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. and DJF (2016) Gaussian 16, Revision C.01

  33. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  34. Analyzer AMW, Lu T (2019) Multiwfn. 7:

  35. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Lu T (2021) Efficient evaluation of electrostatic potential with computerized optimized code. Phys Chem Chem Phys 23:20323–20328. https://doi.org/10.1039/D1CP02805G

    Article  CAS  PubMed  Google Scholar 

  37. Khlaifia D, Massuyeau F, Ewels C et al (2017) DFT modeling of novel donor-acceptor (D-A) molecules incorporating 3-hexylthiophene (3HT) for Bulk Heterojunction Solar Cells. ChemistrySelect 2:10082–10090. https://doi.org/10.1002/slct.201701481

    Article  CAS  Google Scholar 

  38. Zhan C-G, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107:4184–4195. https://doi.org/10.1021/jp0225774

    Article  CAS  Google Scholar 

  39. Putz MV (2013) Koopmans’ analysis of chemical hardness with spectral-like resolution. Sci World J 2013:348415. https://doi.org/10.1155/2013/348415

    Article  CAS  Google Scholar 

  40. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity Index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  41. Chakraborty D, Chattaraj PK (2021) Conceptual density functional theory based electronic structure principles. Chem Sci 12:6264–6279. https://doi.org/10.1039/d0sc07017c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dutra FR, de Silva C, S, Custodio R (2021) On the accuracy of the direct method to calculate pKa from electronic structure calculations. J Phys Chem A 125:65–73. https://doi.org/10.1021/acs.jpca.0c08283

    Article  CAS  PubMed  Google Scholar 

  43. Kelly CP, Cramer CJ, Truhlar DG (2006) Aqueous solvation free energies of ions and ion−water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110:16066–16081. https://doi.org/10.1021/jp063552y

    Article  CAS  PubMed  Google Scholar 

  44. Mittal A, Vashistha VK, Das DK (2023) Free radical scavenging activity of Gallic acid toward various reactive oxygen, nitrogen, and Sulfur species: a DFT approach. Free Radic Res 1–10. https://doi.org/10.1080/10715762.2023.2197556

  45. Coimbra M, Isacchi B, van Bloois L et al (2011) Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm 416:433–442. https://doi.org/10.1016/j.ijpharm.2011.01.056

    Article  CAS  PubMed  Google Scholar 

  46. Abdel-Mottaleb MSA (2016) DFT studies of caffeic acid antioxidant: molecular orbitals and composite reactivity maps correlation with photophysical characteristics and photochemical stability. J Chem 2016:8727130. https://doi.org/10.1155/2016/8727130

    Article  CAS  Google Scholar 

  47. Marković Z, Tošović J, Milenković D, Marković S (2016) Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents. Comput Theor Chem 1077:11–17. https://doi.org/10.1016/j.comptc.2015.09.007

    Article  CAS  Google Scholar 

  48. Ferreira CA, Ni D, Rosenkrans ZT, Cai W (2018) Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res 11:4955–4984. https://doi.org/10.1007/s12274-018-2092-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012:936486. https://doi.org/10.1155/2012/936486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Galano A (2015) Free radicals induced oxidative stress at a molecular level: The current status, challenges and perspectives of computational chemistry based protocols

  51. Bartmess JE (1994) Thermodynamics of the Electron and the Proton. J Phys Chem 98:6420–6424. https://doi.org/10.1021/j100076a029

    Article  CAS  Google Scholar 

  52. Najafi H (2013) Theoretical study of the substituent effects on the reaction enthalpies of the antioxidant mechanisms of stobadine derivatives in the gas-phase and water. J Theor Comput Chem 12:

  53. Martínez A, Hernández-Marin E, Galano A (2012) Xanthones as antioxidants: A theoretical study on the thermodynamics and kinetics of the single electron transfer mechanism. Food Funct 3:442–450. https://doi.org/10.1039/C2FO10229C

    Article  PubMed  Google Scholar 

  54. Mittal A, Kakkar R (2020) The effect of solvent polarity on the antioxidant potential of echinatin, a retrochalcone, towards various ROS: a DFT thermodynamic study. Free Radic Res 54:777–786. https://doi.org/10.1080/10715762.2020.1849670

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author Sumayya P.C. expresses sincere gratitude to UGC-MANF for financial support (Research fellowship). The authors are also thankful to the Central Sophisticated Instrumentation Facility (CSIF) of the University of Calicut for the Gaussian 16 software support.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Author information

Authors and Affiliations

Authors

Contributions

S.P.C. involved in idea, methods, software, experiment setup, preparation of data and evaluation, and paper writing and editing. Dr. K.M. involved in monitoring, proof reading, final editing, and guidance.

Corresponding author

Correspondence to K. Muraleedharan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Human and animal rights

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1631 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumayya, P.C., Muraleedharan, K. Quenching of reactive species by Avenanthramides: theoretical insight to the thermodynamics of electron transfer. Theor Chem Acc 143, 37 (2024). https://doi.org/10.1007/s00214-024-03111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-024-03111-2

Keywords

Navigation