Log in

Insights into the HO· and HOO· radical scavenging activity of aryl carbamate derivative: a computational mechanistic and kinetic investigation

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Aryl carbamates exhibit significant utility due to their diverse range of biological activities, including anticancer, antituberculosis, and antioxidant properties. This study will focus on a comparative evaluation of the antioxidant capabilities of two aryl carbamate derivatives, namely Methyl(Z)-(1-(hydroxyamino) ethyl)-5-(methoxycarbonyl) amino)-2-methyl-1H-indole 1 carboxylate (Compound 1) and Dimethyl (1,3-dioxo-2,3-dihydro-1H-indene-2,2-diyl) bis (4,1 phenylene) dicarbamate (Compound 2). To assess the anti-oxidant capacity, two distinct reactive oxygen species, such as highly reactive hydroxyl (HO·) and moderately reactive hydroperoxyl (HOO·), have been taken into consideration. Four distinct scavenging processes, including RAF, HAT, SETPT, and SPLET, have been investigated here. The RAF mechanism was determined to be the most effective anti-oxidant pathway, regardless of the compounds or free radicals investigated here. For both HO· and HOO·, compound 1 demonstrated more potent scavenging capabilities than compound 2. Compounds 1 and 2 react with the HO· radical very quickly due to its extraordinarily high reactivity; in contrast, the less reactive HOO· provides a rather moderate rate. The calculated values of overall rate constant of Comp. 1 reaction with HOO· are 3.7 × 103 M−1 s−1 (gas phase), 5.3 × 101 M−1 s−1 (water), and 3.6 × 100 M−1 s−1 (pentyl ethanoate). With this context it is clear both of the compounds can work as strong and mild antioxidant against HO· and HOO· radical, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Niki E (2016) Antioxidant capacity of foods for scavenging reactive oxidants and inhibition of plasma lipid oxidation induced by multiple oxidants. Food Funct 7:2156–2168

    Article  CAS  PubMed  Google Scholar 

  2. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  3. Finkel T (2005) Radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol 6:971–976

    Article  CAS  PubMed  Google Scholar 

  4. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    Article  CAS  PubMed  Google Scholar 

  5. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gülçin I (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391

    Article  PubMed  Google Scholar 

  7. Ghosh AK, Brindisi M (2015) Organic carbamates in drug design and medicinal chemistry. J Med Chem 58:2895–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meng Q, Luo H, Liu Y et al (2009) Synthesis and evaluation of carbamate prodrugs of SQ109 as antituberculosis agents. Bioorg Med Chem Lett 19:2808–2810

    Article  CAS  PubMed  Google Scholar 

  9. Naveen, Kumar Tittal R, Vikas GD et al (2020) Synthesis, antimicrobial activity, molecular docking and DFT study: aryl-carbamic acid 1-benzyl-1H-[1,2,3]triazol-4-ylmethyl esters. ChemistrySelect 5:6723–6729

    Article  CAS  Google Scholar 

  10. Janganati V, Penthala NR, Madadi NR et al (2014) Anti-cancer activity of carbamate derivatives of melampomagnolide B. Bioorg Med Chem Lett 24:3499–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shreder KR, Lin ECK, Wu J et al (2012) Synthesis and structure-activity relationship of (1-halo-2-naphthyl) carbamate-based inhibitors of KIAA1363 (NCEH1/AADACL1). Bioorg Med Chem Lett 22:5748–5751

    Article  CAS  PubMed  Google Scholar 

  12. Kuş C, Altanlar N (2003) Synthesis of some new benzimidazole carbamate derivatives for evaluation of antifungal activity. Turk J Chem 27:35–39

    Google Scholar 

  13. Solyev PN, Shipitsin AV, Karpenko IL et al (2012) Synthesis and anti-HIV properties of new carbamate prodrugs of AZT. Chem Biol Drug Des 80:947–952

    Article  CAS  PubMed  Google Scholar 

  14. Rogers SA, Lindsey EA, Whitehead DC et al (2011) Synthesis and biological evaluation of 2-aminoimidazole/carbamate hybrid anti-biofilm and anti-microbial agents. Bioorg Med Chem Lett 21:1257–1260

    Article  CAS  PubMed  Google Scholar 

  15. Férriz JM, Vávrová K, Kunc F et al (2010) Salicylanilide carbamates: antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg Med Chem 18:1054–1061

    Article  PubMed  Google Scholar 

  16. Yanovsky I, Finkin-Groner E, Zaikin A et al (2012) Carbamate derivatives of indolines as cholinesterase inhibitors and antioxidants for the treatment of Alzheimer’s disease. J Med Chem 55:10700–10715

    Article  CAS  PubMed  Google Scholar 

  17. Kurt BZ, Gazioglu I, Kandas NO, Sonmez F (2018) Synthesis, anticholinesterase, antioxidant, and anti-aflatoxigenic activity of novel coumarin carbamate derivatives. ChemistrySelect 3:3978–3983

    Article  CAS  Google Scholar 

  18. Estevão MS, Carvalho LC, Ribeiro D et al (2010) Antioxidant activity of unexplored indole derivatives: synthesis and screening. Eur J Med Chem 45:4869–4878

    Article  PubMed  Google Scholar 

  19. Jasiewicz B, Kozanecka-Okupnik W, Przygodzki M et al (2021) Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives. Sci Rep 11:1–14

    Article  Google Scholar 

  20. Gürkök G, Coban T, Suzen S (2009) Melatonin analogue new indole hydrazide/hydrazone derivatives with antioxidant behavior: synthesis and structureactivity relationships. J Enzyme Inhib Med Chem 24:506–515

    Article  PubMed  Google Scholar 

  21. Kolyada MN, Osipova VP, Polovinkina MA et al (2022) Evaluation of antioxidant properties of new functionally substituted aryl carbamates. AIP Conf Proc 2390:020035

    Article  CAS  Google Scholar 

  22. Osipova VP, Polovinkina MA, Kolumbet AD et al (2022) Antiradical activity of polycyclic compounds with indole and isoindole moieties. Dokl Chem 505:159–163

    Article  CAS  Google Scholar 

  23. Draganic IG, Draganic ZD (1971) The radiation chemistry of water. Academic Press, New York

    Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, et al (2016) Gaussian 16, Revision A.03. Wallingford CT

  25. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  26. Rassolov VA, Ratner MA, Pople JA et al (2001) 6–31G* basis set for third-row atoms. J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  27. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  28. Hehre WJ, Ditchfield K, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  29. Galano A, Alvarez-Idaboy JR (2014) Kinetics of radical-molecule reactions in aqueous solution: a benchmark study of the performance of density functional methods. J Comput Chem 35:2019–2026

    Article  CAS  PubMed  Google Scholar 

  30. Zhao Y, Truhlar DG (2008) How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals? J Phys Chem A 112:1095–1099

    Article  CAS  PubMed  Google Scholar 

  31. Mandal D, Sahu C, Bagchi S, Das AK (2013) Kinetics and mechanism of the tropospheric oxidation of vinyl acetate initiated by OH radical: a theoretical study. J Phys Chem A 117:3739–3750

    Article  CAS  PubMed  Google Scholar 

  32. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  33. Galano A, Raúl Alvarez-Idaboy J (2019) Computational strategies for predicting free radical scavengers’ protection against oxidative stress: Where are we and what might follow? Int J Quantum Chem 119:e25665

    Article  Google Scholar 

  34. Galano A, Alvarez-Idaboy JR (2013) A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity. J Comput Chem 34:2430–2445

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez C, Bernhard Schlegel H (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  36. Gonzalez C, Schlegel HB (1991) Improved algorithms for reaction path following: higher-order implicit algorithms. J Chem Phys 95:5853–5860

    Article  CAS  Google Scholar 

  37. Dzib E, Cabellos JL, Ortíz-Chi F et al (2019) Eyringpy: a program for computing rate constants in the gas phase and in solution. Int J Quantum Chem 119:11–13

    Article  Google Scholar 

  38. Dzib E, Cabellos JL, Ortiz-Chi F et al (2018) Eyringpy 1.0. 2. Cinvestav: Mérida, Yucatán

  39. Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894

    Article  CAS  Google Scholar 

  40. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:63–71

    Article  Google Scholar 

  41. Truhlar DG, Hase WL, Hynes JT (1983) Current status of transition-state theory. J Phys Chem 87:2664–2682

    Article  CAS  Google Scholar 

  42. Furuncuoǧlu T, Uǧur I, Degirmenci I, Aviyente V (2010) Role of chain transfer agents in free radical polymerization kinetics. Macromolecules 43:1823–1835

    Article  Google Scholar 

  43. Velez E, Quijano J, Notario R et al (2009) A computational study of stereospecifity in the thermal elimination reaction of menthyl benzoate in the gas phase. J Phys Org Chem 22:971–977

    Article  CAS  Google Scholar 

  44. Eckart BC (1930) The penetration of a potential barrier by electrons. Phys Rev 35:1303–1309

    Article  CAS  Google Scholar 

  45. Wang G, Xue Y, An L et al (2015) Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Food Chem 171:89–97

    Article  CAS  PubMed  Google Scholar 

  46. Estévez L, Otero N, Mosquera RA (2010) A computational study on the acidity dependence of radical-scavenging mechanisms of anthocyanidins. J Phys Chem B 114:9706–9712

    Article  PubMed  Google Scholar 

  47. Kaur C, Mandal D (2023) The scavenging mechanism of aminopyrines towards hydroxyl radical: A computational mechanistic and kinetics investigation. Comput Theor Chem 1219:113973

    Article  CAS  Google Scholar 

  48. Shang Y, Zhou H, Li X et al (2019) Theoretical studies on the antioxidant activity of viniferifuran. New J Chem 43:15736–15742

    Article  CAS  Google Scholar 

  49. Zhou H, Li X, Shang Y, Chen K (2019) Radical scavenging activity of puerarin: A theoretical study. Antioxidants 8:1–9

    Article  Google Scholar 

  50. Zheng YZ, Deng G, Chen DF et al (2018) Theoretical studies on the antioxidant activity of pinobanksin and its ester derivatives: Effects of the chain length and solvent. Food Chem 240:323–329

    Article  CAS  PubMed  Google Scholar 

  51. Zheng YZ, Deng G, Liang Q et al (2017) Antioxidant activity of quercetin and its glucosides from propolis: A theoretical study. Sci Rep 7:1–11

    Google Scholar 

  52. Alberto ME, Russo N, Grand A, Galano A (2013) A physicochemical examination of the free radical scavenging activity of Trolox: Mechanism, kinetics and influence of the environment. Phys Chem Chem Phys 15:4642–4650

    Article  CAS  PubMed  Google Scholar 

  53. Vo QV, Nam PC, Van BM et al (2018) Density functional theory study of the role of benzylic hydrogen atoms in the antioxidant properties of lignans. Sci Rep 8:1–10

    Article  Google Scholar 

  54. Xue Y, Zheng Y, An L et al (2014) Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins. Food Chem 151:198–206

    Article  CAS  PubMed  Google Scholar 

  55. León-Carmona JR, Galano A (2011) Is caffeine a good scavenger of oxygenated free radicals? J Phys Chem B 115:4538–4546

    Article  PubMed  Google Scholar 

  56. Boulebd H, Mechler A, Hoa NT et al (2020) Thermodynamic and kinetic studies of the antiradical activity of 5-hydroxymethylfurfural: Computational insights. New J Chem 44:9863–9869

    Article  CAS  Google Scholar 

  57. Vo QV, Van Bay M, Nam PC, Mechler A (2019) Is Indolinonic Hydroxylamine a Promising Artificial Antioxidant? J Phys Chem B 123:7777–7784

    Article  CAS  PubMed  Google Scholar 

  58. Galano A (2011) On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Phys Chem Chem Phys 13:7178–7188

    Article  CAS  PubMed  Google Scholar 

  59. Nguyen NT, Dai VV, Mechler A et al (2022) Synthesis and evaluation of the antioxidant activity of 3-pyrroline-2-ones: experimental and theoretical insights. RSC Adv 12:24579–24588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D. Mandal is very much grateful to the Department of Science and Technology, Government of India, for providing the INSPIRE Faculty Fellowship (DST/INSPIRE/04/2016/001948) and Thapar Institute of Engineering and Technology SEED grant (TU/DORSP/57/7278). C Kaur is thankful to TIET for providing fellowship.

Funding

PES for the reactions of OOH radical, optimized geometry, cartesian coordinate, and thermochemistry of all the species are available in the supplementary information.

Author information

Authors and Affiliations

Authors

Contributions

D.M.: Conceptualization, analysis, and Writing- Reviewing and Editing. C.K.: Data calculation, investigation, Writing- initial draft preparation

Corresponding author

Correspondence to Debasish Mandal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1627 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, C., Mandal, D. Insights into the HO· and HOO· radical scavenging activity of aryl carbamate derivative: a computational mechanistic and kinetic investigation. Theor Chem Acc 143, 28 (2024). https://doi.org/10.1007/s00214-024-03102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-024-03102-3

Keywords

Navigation