Log in

Chelating effect of alizarin-oxalate on La3+ and Nd3+ in acidic, basic and neutral medium: a DFT study

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This study focuses on conducting a comparative study of the extraction capacities of alizarin-oxalate (AR-Ox) ligands with La3+ and Nd3+ in acidic, neutral, and alkaline mediums. Density functional theory calculations at ωB97X-D/6-311++G(d,p)/SDD level have been performed for structural, thermochemical, frontier-orbital (highest occupied molecular orbitals and lowest unoccupied molecular orbitals), natural bond orbital, reduced density gradient (RDG), and density of state analysis for alizarin-oxalate-La(III) (AR-Ox-La) and alizarin-oxalate-Nd(III) (AR-Ox-Nd) complexes. The bonding characteristics of La3+ & Nd3+ ions with alizarin-oxalate ligand have been analysed using the quantum theory of atoms in molecules, revealing the presence of an intermediate type of bond between closed-shell and shared-shell electrons in (La/Nd)-O, (La/Nd)-C. The reduced density gradient (RDG) and iso-surface generated through the Multiwfn program shows mostly hydrogen-like and van der Waals interaction between La3+/Nd3+ and oxygen atoms of alizarin-oxalate ligand except for some of the complexes showing the presence of non-bonded/repulsive (La/Nd)-O interaction. Thermochemical, DOS, and natural bond orbital analysis reveals alizarin-oxalate-(La3+/Nd3+) complexes in the alkaline medium is more stable than in neutral and acidic medium, and the stability of AR-Ox-Nd complexes is more than AR-Ox-La complexes. It is observed that participation of oxygen atoms from both alizarin and oxalate in bond formation with lanthanides enhances the stability of alizarin-oxalate-lanthanide complexes, emphasizing the pivotal role of ligand coordination modes. This work illustrates the subtle differences in chelating properties of alizarin-oxalate ligands with La3+ and Nd3+ for designing new ligands for efficient selective lanthanide separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References:

  1. Baldwin AG, Ivanov AS, Williams NJ, Ellis RJ, Moyer BA, Bryantsev VS, Shafer JC (2018) ACS Cent Sci 4:739. https://doi.org/10.1021/acscentsci.8b00223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Staszak K, Wieszczycka K, Marturano V, Tylkowski B (2019) Coord Chem Rev 397:76–90. https://doi.org/10.1016/j.ccr.2019.06.017

    Article  CAS  Google Scholar 

  3. Simon C (2013) Lanthanide and actinide chemistry. Wiley, Germany

    Google Scholar 

  4. Swain B, Otu EO (2011) Sep Purif Technol 83:82–90. https://doi.org/10.1016/j.seppur.2011.09.015

    Article  CAS  Google Scholar 

  5. Peroutka AA, Galley SS, Shafer JC (2023) Coord Chem Rev 482:215071. https://doi.org/10.1016/j.ccr.2023.215071

    Article  CAS  Google Scholar 

  6. Ibrahim SM, Zhang Y, Xue Y, Yang S, Ma F, Gao Y, Zhou Y, Tian G (2019) ACS Omega 4(24):20797–20806. https://doi.org/10.1021/acsomega.9b03241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krisyuk VV, Urkasym Kyzy S, Rybalova TV, Korolkov IV, Grebenkina MA (2022) Lavrov AN 27(23):8400. https://doi.org/10.3390/molecules27238400

    Article  CAS  Google Scholar 

  8. Lee JH, Kim YG, Yong Ryu S, Lee J (2016) Sci Rep 14(6):19267. https://doi.org/10.1038/srep19267

    Article  ADS  CAS  Google Scholar 

  9. Fain VY, Zaitsev BE, Ryabov MA (2004) Russ J Coord Chem 30(5):365–370. https://doi.org/10.1023/B:RUCO.0000026008.98495.51

    Article  CAS  Google Scholar 

  10. Komiha N, Kabbaj OK, Chraibi M (2002) J Mol Struct (THEOCHEM) 594:135–145. https://doi.org/10.1016/S0166-1280(02)00140-9

    Article  CAS  Google Scholar 

  11. Rinehart RW (1954) Anal Chem 26:11. https://doi.org/10.1021/ac60095a039

    Article  Google Scholar 

  12. Etaiw SEDH, Fouda AEAS, Abdou SN, El-bendary MM (2011) Corros Sci 53(11):20. https://doi.org/10.1016/j.corsci.2011.07.007

    Article  CAS  Google Scholar 

  13. Kakkar R, Grover R, Gahlot P (2006) J Mol Struct (Thoechem) 767:175–184. https://doi.org/10.1016/j.theochem.2006.05.041

    Article  CAS  Google Scholar 

  14. Jeremic S, Filipovic N, Peulic A, Markovic Z (2014) Comput Theor Chem 1047:15–21. https://doi.org/10.1016/j.comptc.2014.08.007

    Article  CAS  Google Scholar 

  15. Mech J, Grela MA, Szacilowski K (2014) Dyes Pigm 103:202–213. https://doi.org/10.1016/j.dyepig.2013.12.009

    Article  CAS  Google Scholar 

  16. Petke JD, Butler P, Maggiora GM (1985), 27(1), 71–87. https://doi.org/10.1002/qua.560270106

  17. Marasinghe PAB, Gillispie GD (1989), 136(2), 249–257. https://doi.org/10.1016/0301-0104(89)80050-3

  18. Ferreiro M, Rodrı́guez-Otero J (2001), THEOCHEM, 542(1-2), 63–77. https://doi.org/10.1016/S0166-1280(00)00811-3

  19. Feher PP, Purgel M, Joo F (2014) Comput Theor Chem 1045:113–122. https://doi.org/10.1016/j.comptc.2014.06.025

    Article  CAS  Google Scholar 

  20. Favrereguillon A (2004) Talanta 63(3):803–806. https://doi.org/10.1016/j.talanta.2003.12.03

    Article  CAS  PubMed  Google Scholar 

  21. Kawashima T, Ogawa H, Hamaguchi H (1961) Talanta 8(7):552–556. https://doi.org/10.1016/0039-9140(61)80134-3

    Article  Google Scholar 

  22. Al-Gburi LJ, Al-Noor TH (2023) Anal Sci Technol 36(2):1–11. https://doi.org/10.5806/AST.2023.36.2.1

    Article  Google Scholar 

  23. Singh P, Naskar N (2021) J Anal Sci Technol 12:57. https://doi.org/10.1186/s40543-021-00308-z

    Article  CAS  Google Scholar 

  24. Bernal I, Cetrullo J (1990) Struct Chem 1(2–3):235–243. https://doi.org/10.1007/BF00674267

    Article  CAS  Google Scholar 

  25. Muzart J (1993). Synthesis. https://doi.org/10.1055/s-1993-25779

    Article  Google Scholar 

  26. Mohammadkhani L, Heravi MM (2019) Oxalyl chloride: a versatile reagent in organic transformations. ChemistrySelect 4(20):6309–6337. https://doi.org/10.1002/slct.201900120

    Article  CAS  Google Scholar 

  27. Ali NM, Amaniampong PN, Karam A (2016) Determination of optimal conditions for electrodeposition of Tin(II) in the presence of Alizarin Red S. Heliyon 2(12):e00212. https://doi.org/10.1016/j.heliyon.2016.e00212

    Article  PubMed  PubMed Central  Google Scholar 

  28. Weinhold F, Landis F (2005), Cambridge University Press, Cambridge.

  29. Laidig KE, Bader RFW (1990) J Chem Phys 93:7213–7224. https://doi.org/10.1063/1.459444

    Article  ADS  CAS  Google Scholar 

  30. Ofem MI, Louis H, Agwupuye JA, Ameuru US, Apebende GC, Gber TE, Odey JO, Musa N, Ayi AA (2022) BMC Chem 16:109. https://doi.org/10.1186/s13065-022-00896-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson ER, Keinan S, Mori-Sanchez P, Contreras Garcıa J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016), Gaussian 16, Revision C.01, Gaussian, Inc.: Wallingford, CT.

  33. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10(44):6615. https://doi.org/10.1039/B810189B

    Article  CAS  PubMed  Google Scholar 

  34. Kenneth B (2004) Wiberg 25(11):1342–1346. https://doi.org/10.1002/jcc.20058

    Article  CAS  Google Scholar 

  35. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theoret Chim Acta 77:123. https://doi.org/10.1007/BF01114537

    Article  CAS  Google Scholar 

  36. Pati A, Kundu TK, Pal S (2019) Comput Theor Chem 1170:112643. https://doi.org/10.1016/j.comptc.2019.112643

    Article  CAS  Google Scholar 

  37. Scalmani G, Frisch MJ (2010) J Chem Phys 132(11):114110. https://doi.org/10.1063/1.3359469

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Boys SF, Bernardi F (1970) Mol Phys 19(4):553–566. https://doi.org/10.1080/00268977000101561

    Article  ADS  CAS  Google Scholar 

  39. Sanchez-Marquez J, Garcia V, Zorrilla D, Fernandez M (2020) J Phys Chem A 124(23):4700–4711. https://doi.org/10.1021/acs.jpca.0c01342

    Article  CAS  PubMed  Google Scholar 

  40. Pal S, Kundu TK (2012) Theoretical study of hydrogen bond formation in trimethylene glycol-water complex. Int Sch Res Not. https://doi.org/10.5402/2012/570394

    Article  Google Scholar 

  41. Pal S, Kundu TK (2013) Stability analysis and frontier orbital study of different glycol and water complex. Int Sch Res Not. https://doi.org/10.1155/2013/753139

    Article  Google Scholar 

  42. Lu T, Chen F (2012) J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  43. Sai Sathish R, Ravi Kumar M, Nageswara Rao G, Anil Kumar K, Janardhana C (2007) Spectrochimica Acta Part A 66:457–461. https://doi.org/10.1016/j.saa.2006.03.023

    Article  ADS  CAS  Google Scholar 

  44. Moriguchi T, Yano K, Nakagawa S, Kaji F (2003) J Colloid Interface Sci 260:19–25. https://doi.org/10.1016/S0021-9797(02)00157-1

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Saxena R, Singh AK, Sambi SS (1994) Anal Chim Acta 295:199–204. https://doi.org/10.1016/0003-2670(94)80351-X

    Article  CAS  Google Scholar 

  46. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

Download references

Author information

Authors and Affiliations

Authors

Contributions

Anindita Pati: Performed all the DFT calculations, analysed data and wrote the manuscript. Snehanshu Pal: Supervised and reviewed all the DFT calculations and data. Tarun Kumar Kundu: Supervised and reviewed the entire work and shared valuable comments to finalize the manuscript.

Corresponding author

Correspondence to T. K. Kundu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8468 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pati, A., Kundu, T.K. & Pal, S. Chelating effect of alizarin-oxalate on La3+ and Nd3+ in acidic, basic and neutral medium: a DFT study. Theor Chem Acc 143, 21 (2024). https://doi.org/10.1007/s00214-024-03094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-024-03094-0

Keywords

Navigation