Log in

Single alkali metal-doped hexalithioborazine complexes with exceptionally high value of polarizability and first hyperpolarizability: a DFT-based computational study

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Alkali atom-doped hexalithioborazine (B3N3Li6-M) as a novel class of super-alkali complex has been investigated for their exceptionally high first-order and second-order electrical responsive properties. The stability of resulting complexes, B3N3Li6-M (M = Li, Na, and K), is confirmed by the ADMP simulation and the negative values of thermodynamic parameters such as binding energy (∆Eb) and Gibbs free energy (∆G). The relationship between aromaticity (NICS) and first hyperpolarizability of B3N3Li6-M follows linear relationship. Diffuse electron cloud around the central ring and doped alkali metal in the HOMO of B3N3Li6-M complexes has been attributed to the charge transfer from peripheral Li to the dopant metal (M) atom. The dipole moment of B3N3Li6-M varies between 0.507 D (M = Na) and 1.608 D (M = Li) due to charge transfer in these complexes. The mean polarizabilities (αav) of B3N3Li6-M ranging from 573.08 to 1598.86 a.u are observed. Exceptionally high value of second-order NLO parameter (βav = 5.133 \(\times \) 105 a.u and βHRS = 2.166 \(\times \) 106 a.u) are observed in case of Li-doped B3N3Li6 in this series. Thus, the first hyperpolarizability (βav and βHRS) values of the complexes produced by the interactions between alkali metal atoms (M) and B3N3Li6 are strong enough to demonstrate as potential second-order NLO materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Raw data are available on request to the author.

References

  1. He GS, Tan LS, Zheng Q, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108:1245–1330

    Article  CAS  PubMed  Google Scholar 

  2. Chen A, Murphy EJ (2012) Broadband Optical Modulators: Science. Technology. and Applications. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  3. Marder SR (2006) Organic nonlinear optical materials: where we have been and where we are going. Chem Commun 2:131–134

    Article  Google Scholar 

  4. Zhang C, Song Y, Wang X (2007) Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: a comparative study. Coord Chem Rev 251:111–141

    Article  CAS  Google Scholar 

  5. Reed GT, Mashanovich G, Gardes FY, Thomson DJ (2010) Silicon optical modulators. Nat Photon 4:518–526

    Article  CAS  Google Scholar 

  6. Roy RS, Nandi PK (2018) Electronic structure and large secondorder non-linear optical property of COT derivatives – a theoretical exploration. Phys Chem Chem Phys 20:18744–18755

    Article  CAS  PubMed  Google Scholar 

  7. Mandal U, Samanta SS, Beg H, Misra A (2023) Investigation of first hyper-polarisability molecular switches between enol–keto equilibrium of phenyl benzodifurantrione: a DFT-based computational study. Mol Phys 121:e2161964

    Article  Google Scholar 

  8. Maity R, Mandal D, Mandal U, Misra A (2022) Computation of global reactivity descriptors along the proton transfer co-ordinate of 9-Hydroxyphenalen-1-one and 6-Hydroxy-benzo[de]anthracen-7-one: a DFT-based comparative study. Mol Phys 120(9):e2047236

    Article  Google Scholar 

  9. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL, Aoki Y (2006) Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): alkali anion atomic number dependence. J Am Chem Soc 128:1072–1073

    Article  CAS  PubMed  Google Scholar 

  10. Maity R, Mandal D, Misra A (2019) Effect of donor acceptor substitution position on the electrical responsive properties of azulene system: a computational study. Mol Phys 117(14):1781–1789

    Article  CAS  Google Scholar 

  11. Cesaretti A, Foggi P, Fortuna CG, Elisei F, Spalletti A, Carlotti B (2020) Uncovering structure−property relationships in push−pull chromophores: a promising route to large hyperpolarizability and two−photon absorption. J Phys Chem C 124(29):15739–15748

    Article  CAS  Google Scholar 

  12. Wang YF, Qin T, Tang JM, Liu YJ, **e M, Li J, Huang J, Li ZR (2020) Novel inorganic aromatic mixed-valent superalkali electride CaN3Ca: an alkaline-earth-based high-sensitivity multi-state nonlinear optical molecular switch. Phys Chem Chem Phys 22:5985–5994

    Article  CAS  PubMed  Google Scholar 

  13. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quant Chem Aspects Chem Rev 94:195–242

    Article  CAS  Google Scholar 

  14. Ravikumar C, Joe IH, Jayakumar VS (2008) Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: a vibrational approach. Chem Phys Lett 460:552–558

    Article  CAS  Google Scholar 

  15. Zhao Y, Ye C, Qiao Y, Xu W, Song Y, Zhu D (2012) A novel donor acceptor molecule containing a cyclic triphenylamine dimer: synthesis, characterization, and application in memory device. Tetrahedron 68:1547–1551

    Article  CAS  Google Scholar 

  16. Castet F, Pic A, Champagne B (2014) Linear and nonlinear optical properties of Arylvinyldiazine dyes: a theoretical investigation. Dyes Pigm 110:256–260

    Article  CAS  Google Scholar 

  17. Sayin K, Karakas D, Karakus N, Sayin TA, Zaim Z, Kariper SE (2015) Spectroscopic investigation, FMOs and NLO analyses of Zn(II) and Ni(II) phenanthroline complexes: a DFT approach. Polyhedron 90:139–146

    Article  CAS  Google Scholar 

  18. Zhang Y, Castet F, Champagne B (2013) Theoretical investigation of the first hyperpolarizability Redox-switching in a Ruthenium complex. Chem Phys Lett 574:42–46

    Article  CAS  Google Scholar 

  19. de Wergifosse M, Castet F, Champagne B (2015) Frequency dispersion of the first hyperpolarizabilities of reference molecules for nonlinear optics. J Chem Phys 142:1–7

    Article  Google Scholar 

  20. Shelton DP, Rice JE (1994) Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase. Chem Rev 94:3–29

    Article  CAS  Google Scholar 

  21. Rohrdanz MA, Martins KM, Herbert JH (2009) A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states. J Chem Phys 130:1–8

    Article  Google Scholar 

  22. Garza AJ, Wazzan NA, Asiri AM, Scuseria GE (2014) Can Short- and middle-range hybrids describe the hyperpolarizabilities of long-range charge-transfer compounds. J Phys Chem A 118:11787–11796

    Article  CAS  PubMed  Google Scholar 

  23. Karton A, Martin JML (2006) Comment on “estimating the Hartree-fock limit from finite basis set calculations.” Theor Chem Acc 115:330–333

    Article  CAS  Google Scholar 

  24. Tozer DJ, Handy NC (1998) Improving virtual Kohn-Sham orbitals and Eigenvalues: application to excitation energies and static polarizabilities. J Chem Phys 109:10180–10189

    Article  CAS  Google Scholar 

  25. Alipour M, Fallahzadeh P (2016) First principles optimally tuned range-separated density functional theory for prediction of phosphorus-hydrogen spin–spin coupling constants. Phys Chem Chem Phys 18:18431–18440

    Article  CAS  PubMed  Google Scholar 

  26. Zouaoui-Rabah M, Sekkal-Rahal M, Djilani-Kobibi F, Elhorri MA, Springborg M (2016) Performance of hybrid DFT compared to MP2 Methods in calculating nonlinear optical properties of divinylpyrene derivative molecules. J Phys Chem A 120(44):8843–8852

    Article  CAS  PubMed  Google Scholar 

  27. Chen W, Li ZR, Wu D, Gu FL, Hao XY, Wang BQ, Li RJ, Sun CC (2004) The static polarizability and first hyperpolarizability of the water trimer anion: Ab initio study. J Chem Phys 121:10489–10494

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Li ZR, Wu D, Li RY, Hao XY, Sun CC (2004) An ab initio prediction of the extraordinary static first hyperpolarizability for the electron-solvated cluster (FH)2{e}(HF). J Phys Chem B 108:3145–3148

    Article  CAS  Google Scholar 

  29. Zhong RL, Xu HL, Li ZR, Su ZM (2015) Role of excess electrons in nonlinear optical response. J Phys Chem Lett 6:612–619

    Article  CAS  PubMed  Google Scholar 

  30. Li X (2018) Design of novel graphdiyne-based materials with large second-order nonlinear optical properties. J Mater Chem C 6:7576–7583

    Article  CAS  Google Scholar 

  31. Li X, Li S (2019) Investigations of electronic and nonlinear optical properties of single alkali metal adsorbed graphene, graphyne and graphdiyne systems by first-principles calculations. J Mater Chem C 7:1630–1640

    Article  CAS  Google Scholar 

  32. Srivastava AK (2020) Enormously high second-order nonlinear optical response of single alkali atom decorated hexalithiobenzene. J Mol Liq 298:112187

    Article  CAS  Google Scholar 

  33. Dabbagh HA, Shahraki M, Farrokhpour H (2014) Theoretical investigation of the borazine–melamine polymer as a novel candidate for hydrogen storage applications. Phys Chem Chem Phys 16:10519

    Article  CAS  PubMed  Google Scholar 

  34. Schröder M (2010) Functional metal-organic frameworks: gas storage, Separation and Catalysis. Springer, Berlin

  35. Sham IHT, Kwok CC, Che CM, Zhu N (2005) Borazine materials for organic optoelectronic applications. Chem Commun (Camb) 28:3547

    Article  Google Scholar 

  36. Bosdet MJD, Piers WE, Sorensen TS, Parvez M (2007) 10a-Aza- 10b-borapyrenes: heterocyclic analogues of pyrene with internalized BN moieties. Angew Chem Int Ed 46:4940

    Article  CAS  Google Scholar 

  37. Dewar MJS, Kubba VP, Pettit R (1958) New heteroaromatic compounds. Part I. 9-Aza-10-boraphenanthrene. J Chem Soc 3073–3076

  38. Chiavarino B, Crestoni ME, Fornarini S (1999) Electrophilic substitution of gaseous Borazine. J Am Chem Soc 121:2619

    Article  CAS  Google Scholar 

  39. Chiavarino B, Crestoni ME, Marzio AD, Fornarini S, Rosi M (1999) Gas-phase ion chemistry of borazine, an inorganic analogue of benzene. J Am Chem Soc 121:11204

    Article  CAS  Google Scholar 

  40. Srivastava AK, Tiwari SN, Misra N (2018) Alkalized borazine: a simple recipe to design closed-shell superalkalis. Int J Quant Chem 118:e25507

    Article  Google Scholar 

  41. Yanaia T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji HLX, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Jr. Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Gaussian 16, Revision B.01 (Wallingford CT GaussView 5.0. Wallingford, E.U.A.)

  43. Bersohn R, Pao YH, Frisch HL (1966) Double-quantum light scattering by molecules. J Chem Phys 45:3184

    Article  CAS  Google Scholar 

  44. Kleinman D (1962) A nonlinear dielectric polarization in optical media. Phys Rev 126:1977

    Article  CAS  Google Scholar 

  45. Castet F, Bogdan E, Plaquet A, Ducasse L, Champagne B, Rodriguez V (2012) Reference molecules for nonlinear optics: a joint experimental and theoretical investigation. J Chem Phys 136:024506

    Article  PubMed  Google Scholar 

  46. Chakraborty D, Chattaraj PK (2016) Optical response and gas sequestration properties of metal cluster supported graphene nanoflakes. Phys Chem Chem Phys 18:18811–18827

    Article  CAS  PubMed  Google Scholar 

  47. Huang S, Liao K, Peng B, Luo Q (2016) On the potential of using the Al7 superatom as an excess electron acceptor to construct materials with excellent nonlinear optical properties. Inorg Chem 55:4421–4427

    Article  CAS  PubMed  Google Scholar 

  48. Chakraborty A, Bandaru S, Das R, Duley S, Giri S, Goswami K, Mondal S, Pan S, Sena S, Chattaraj PK (2012) Some novel molecular frameworks involving representative elements. Phys Chem Chem Phys 14:14784–14802

    Article  CAS  PubMed  Google Scholar 

  49. Roy RS, Ghosh S, Hatua K, Nandi PK (2021) Superalkali-doped borazine and lithiated borazine complexes: diffuse excess electron and large first-hyperpolarizability. J Mol Model 27:74

    Article  CAS  PubMed  Google Scholar 

  50. PvR S, Jiao H (1996) What is aromaticity? Pure Appl Chem 68:209

    Article  Google Scholar 

  51. Schleyer PVR, Jiao H, Hommes NJVE, Malkin VG, Malkina OL (1997) An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties. J Am Chem Soc 119:12669

    Article  CAS  Google Scholar 

  52. Srivastava AK, Misra N (2017) Competition between alkalide characteristics and nonlinear optical properties in OLi3-M-Li3O (M = Li, Na, and K) complexes. Int J Quant Chem 117:208–212

    Article  CAS  Google Scholar 

  53. Guan W, Liu CG, Song P et al (2009) Quantum chemical study of redox-switchable second-order optical nonlinearity in Keggin-type organoimido derivative [PW11O39(ReNC6H5)]n (n = 2–4). Theor Chem Account 122:265–273

    Article  CAS  Google Scholar 

  54. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  55. Bredas JL (2014) Mind the gap! Mater Horiz 1:17–19

    Article  CAS  Google Scholar 

  56. Zhang X, Wu HQ, Xu HL, Sun SL, Su ZM (2015) Modulating the charge transfer of D-S–A molecules: structures and NLO properties. J Phys Chem A 119:767–773

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

U. Mandal (ref. no. 188/(CSIR-UGC NET June 2019) thanks to UGC for her research fellowship. S.S.S and SG are thankful to CSIR (ref. no. 09/599(0084)/2019/EMR-I) and UGC (ref. no. 201610110785) for their individual fellowship. Departmental computational facilities from DST-FIST (Ref. No. SR/FST/CSI-235/2011) and UGC-SAP (Ref. No. F.5- 9/2015/DRS-11 (SAP-11) programs are gratefully acknowledged.

Funding

All the funders have been acknowledged in the acknowledgment section.

Author information

Authors and Affiliations

Authors

Contributions

All the authors (Usha Mandal, Shashanka Shekhar Samanta, Subhadip Giri and Ajay Misra) made equal contributions while preparing the manuscript and approve the final manuscript.

Corresponding author

Correspondence to Ajay Misra.

Ethics declarations

Conflict of interest

There are no financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work while preparing this manuscript. So, there are no interests to declare. The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 691 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, U., Samanta, S.S., Giri, S. et al. Single alkali metal-doped hexalithioborazine complexes with exceptionally high value of polarizability and first hyperpolarizability: a DFT-based computational study. Theor Chem Acc 142, 122 (2023). https://doi.org/10.1007/s00214-023-03066-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03066-w

Keywords

Navigation