Log in

Degradation by hydrolysis of three triphenylmethane dyes: DFT and TD-DFT study

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

DFT reactivity descriptors, the ultraviolet–visible spectra and hydrolysis mechanism of three cationic dyes [Malachite Green (MG), Brilliant Green (BG) and Ethyl Green (EG)] are performed with several exchange–correlation functional (global GGA, hybrids and range-separated). Using time-dependent density functional theory, the theoretical ultraviolet–visible absorption spectra of the three cationic dyes are obtained and obey the trend for the λmax: GGA > hybrid > range-separated functional. Thanks to the transition state theory, the barriers of hydrolysis mechanism of the cation structures dyes were obtained in gas and solution phase. It is shown that, for these systems the barriers are in order: BG+ < MG+ < EG2+ in gas and solution phase. In the two phases, the CAM-B3LYP functional gives the highest barriers and the M06 gives the lowest ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Looney CW, Simpson WT (1954) Structures and π-electron spectra. III. Triphenylmethane dyes 1, 2, 3. J Am Chem Soc 76(24):6293–6300

    Article  CAS  Google Scholar 

  2. Bendjabeur S, Zouaghi R, Zouchoune B, Sehili T (2018) DFT and TD-DFT insights, photolysis and photocatalysis investigation of three dyes with similar structure under UV irradiation with and without TiO2 as a catalyst: Effect of adsorption, pH and light intensity. Spectrochim Acta Part A Mol Biomol Spectrosc 190:494–505

    Article  CAS  Google Scholar 

  3. Soto-Rojo R, Baldenebro-López J, Glossman-Mitnik D (2015) Study of chemical reactivity in relation to experimental parameters of efficiency in coumarin derivatives for dye sensitized solar cells using DFT. Phys Chem Chem Phys 17(21):14122–14129

    Article  CAS  Google Scholar 

  4. Barker CC, Bride MH, Hallas G, Stamp A (1961) 249. Steric effects in di-and tri-arylmethanes. Part III. Electronic absorption spectra of derivatives of malachite green containing substituents in the phenyl ring. J Chem Soc 1285:1290

    Google Scholar 

  5. Engh RA, Petrich JW, Fleming GR (1985) Removal of coherent coupling artifact in ground-state recovery experiments: malachite green in water-methanol mixtures. J Phys Chem 89(4):618–621

    Article  CAS  Google Scholar 

  6. Lian T, Locke B, Kholodenko Y, Hochstrasser RM (1994) Energy flow from solute to solvent probed by femtosecond IR spectroscopy: malachite green and heme protein solutions. J Phys Chem 98(45):11648–11656

    Article  CAS  Google Scholar 

  7. Nagasawa Y, Ando Y, Okada T (1999) Solvent dependence of ultrafast ground state recovery of the triphenylmethane dyes, brilliant green and malachite green. Chem Phys Lett 312(2–4):161–168

    Article  CAS  Google Scholar 

  8. Miyata R, Kimura Y, Terazima M (2002) Intermolecular energy transfer from the photo-excited molecule to solvent: Malachite Green. Chem Phys Lett 365(5–6):406–412

    Article  CAS  Google Scholar 

  9. Sen P, Yamaguchi S, Tahara T (2010) Ultrafast dynamics of malachite green at the air/water interface studied by femtosecond time-resolved electronic sum frequency generation (TR-ESFG): an indicator for local viscosity. Faraday Discuss 145:411–428

    Article  CAS  Google Scholar 

  10. Li G, Magana D, Dyer RB (2012) Direct observation and control of ultrafast photoinduced twisted intramolecular charge transfer (TICT) in triphenyl-methane dyes. J Phys Chem B 116(41):12590–12596

    Article  CAS  Google Scholar 

  11. Yang J, Yang X, Lin Y, Ng TB, Lin J, Ye X (2015) Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism. PLoS ONE 10(5):e0127714

    Article  Google Scholar 

  12. Wang J et al (2012) Pathway and molecular mechanisms for malachite green biodegradation in Exiguobacterium sp. MG2. PLoS ONE 7(12):e51808

    Article  CAS  Google Scholar 

  13. Navarro P, Zapata JP, Gotor G, Gonzalez-Olmos R, Gómez-López VM (2019) Degradation of malachite green by a pulsed light/H2O2 process. Water Sci Technol 79(2):260–269

    Article  CAS  Google Scholar 

  14. Guillaumont D, Nakamura S (2000) Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT). Dye Pigment 46(2):85–92

    Article  CAS  Google Scholar 

  15. Preat J, Jacquemin D, Wathelet V, André J-M, Perpète EA (2007) Towards the understanding of the chromatic behaviour of triphenylmethane derivatives. Chem Phys 335(2–3):177–186

    Article  CAS  Google Scholar 

  16. Rafiq S, Yadav R, Sen P (2010) Microviscosity inside a nanocavity: a femtosecond fluorescence up-conversion study of malachite green. J Phys Chem B 114(44):13988–13994

    Article  CAS  Google Scholar 

  17. Nakayama A, Taketsugu T (2011) Ultrafast nonradiative decay of electronically excited states of malachite green: ab initio calculations. J Phys Chem A 115(32):8808–8815

    Article  CAS  Google Scholar 

  18. ** dynamics simulations of malachite green: a triphenylmethane dye. J Phys Chem A 119(22):5607–5617

    Article  CAS  Google Scholar 

  19. Fox BM, Hallas G, Hepworth JD, Mason D (1980) The hydrolysis of brilliant green and some derivatives. I. A kinetic and equilibrium study of the hydrolysis of brilliant green. J Chem Technol Biotechnol 30(1):317–323

    Article  CAS  Google Scholar 

  20. Beach SF, Hepworth JD, Mason D, Swarbrick EA (1999) A kinetic study of the hydrolysis of crystal violet and some terminal and bridged analogues. Dye Pigment 42(1):71–77

    Article  CAS  Google Scholar 

  21. Frisch MJ (2009) Gaussian 09, version A. 1. Gaussian Inc., Pittsburgh

    Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  23. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822

    Article  CAS  Google Scholar 

  24. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098

    Article  CAS  Google Scholar 

  25. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58(8):1200–1211

    Article  CAS  Google Scholar 

  26. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  27. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120(1):215–241

    Article  CAS  Google Scholar 

  28. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2(2):364–382

    Article  Google Scholar 

  29. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170

    Article  CAS  Google Scholar 

  30. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    Article  CAS  Google Scholar 

  31. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):84106

    Article  Google Scholar 

  32. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261

    Article  CAS  Google Scholar 

  33. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24(6):669–681

    Article  CAS  Google Scholar 

  34. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102(11):1995–2001

    Article  CAS  Google Scholar 

  35. Improta R (2012) Uv–visible absorption and emission energies in condensed phase by PCM/TD-DFT methods. In: Computational strategies for spectroscopy: from small molecules to nano systems. Wiley, Chichester, pp 39–76

  36. Kawauchi S, Antonov L, Okuno Y (2014) Prediction of the color of dyes by using time-dependent density functional theory (TD-DFT). Bulg Chem Commun 46:228–237

    Google Scholar 

  37. Frisch MJ et al. (2016) Gaussian 16 revision a. 03. 2016; Gaussian inc. Wallingford, CT, vol. 2, no. 4.

  38. Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7(8):2498–2506

    Article  Google Scholar 

  39. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, Cambridge

    Google Scholar 

  40. Andersen P (1965) An electron diffraction investigation of triphenylmethane in gas phase. ACTA Chem Scand 19(3):622

    Article  CAS  Google Scholar 

  41. Andersen P, Klewe B (1967) The crystal structure of the free radical tri-p-nitrophenylmethyl. Acta Chem Scand 21(10):2

    Google Scholar 

  42. Lister DG, Tyler JK, Høg JH, Larsen NW (1974) The microwave spectrum, structure and dipole moment of aniline. J Mol Struct 23(2):253–264

    Article  CAS  Google Scholar 

  43. Fukuyo M, Hirotsu K, Higuchi T (1982) The structure of aniline at 252 K. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 38(2):640–643

    Article  Google Scholar 

  44. Kreutzer J, Blaha P, Schubert U (2016) Assessment of different basis sets and DFT functionals for the calculation of structural parameters, vibrational modes and ligand binding energies of Zr4O2 (carboxylate) 12 clusters. Comput Theor Chem 1084:162–168

    Article  CAS  Google Scholar 

  45. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20(1):129–154

    Article  CAS  Google Scholar 

  46. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  47. Martínez J (2009) Local reactivity descriptors from degenerate frontier molecular orbitals. Chem Phys Lett 478(4–6):310–322

    Article  Google Scholar 

  48. El Haouti R et al (2019) Cationic dyes adsorption by Na-montmorillonite nano clay: experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations. J Mol Liq 290:111139

    Article  Google Scholar 

  49. Jacquemin D, Assfeld X, Preat J, Perpète EA (2007) Comparison of theoretical approaches for predicting the UV/Vis spectra of anthraquinones. Mol Phys 105(2–3):325–331

    Article  CAS  Google Scholar 

  50. Perpète EA, Lambert C, Wathelet V, Preat J, Jacquemin D (2007) Ab initio studies of the λmax of naphthoquinones dyes. Spectrochim Acta Part A Mol Biomol Spectrosc 68(5):1326–1333

    Article  Google Scholar 

  51. Jacquemin D, Preat J, Wathelet V, Fontaine M, Perpète EA (2006) Thioindigo dyes: highly accurate visible spectra with TD-DFT. J Am Chem Soc 128(6):2072–2083

    Article  CAS  Google Scholar 

  52. Jacquemin D, Preat J, Wathelet V, Perpète EA (2006) Substitution and chemical environment effects on the absorption spectrum of indigo. J Chem Phys 124(7):74104

    Article  Google Scholar 

  53. Perpète EA, Preat J, André J-M, Jacquemin D (2006) An ab initio study of the absorption spectra of indirubin, isoindigo, and related derivatives. J Phys Chem A 110(17):5629–5635

    Article  Google Scholar 

  54. Jacquemin D et al (2006) Time-dependent density functional theory investigation of the absorption, fluorescence, and phosphorescence spectra of solvated coumarins. J Chem Phys 125(16):164324

    Article  Google Scholar 

  55. Perpète EA, Maurel F, Jacquemin D (2007) TD−DFT investigation of diarylethene dyes with cyclopentene, dihydrothiophene, and dihydropyrrole bridges. J Phys Chem A 111(25):5528–5535

    Article  Google Scholar 

  56. Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theory Comput 4(1):123–135

    Article  CAS  Google Scholar 

  57. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. J Chem Phys 126(14):144105

    Article  Google Scholar 

  58. Jacquemin D, Preat J, Charlot M, Wathelet V, André J-M, Perpète EA (2004) Theoretical investigation of substituted anthraquinone dyes. J Chem Phys 121(4):1736–1743

    Article  CAS  Google Scholar 

  59. Perpète EA, Wathelet V, Preat J, Lambert C, Jacquemin D (2006) Toward a theoretical quantitative estimation of the λmax of anthraquinones-based dyes. J Chem Theory Comput 2(2):434–440

    Article  Google Scholar 

  60. El Kassimi A, Boutouil A, El Himri M, Laamari MR, El Haddad M (2020) Selective and competitive removal of three basic dyes from single, binary and ternary systems in aqueous solutions: a combined experimental and theoretical study. J Saudi Chem Soc 24(7):527–544

    Article  Google Scholar 

  61. Domingo LR, Pérez P, Sáez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3(5):1486–1494

    Article  CAS  Google Scholar 

  62. Savin A, Silvi B, Colonna F (1996) Topological analysis of the electron localization function applied to delocalized bonds. Can J Chem 74(6):1088–1096

    Article  CAS  Google Scholar 

  63. Savin A, Nesper R, Wengert S, Fässler TF (1997) ELF: the electron localization function. Angew Chemie Int Ed English 36(17):1808–1832

    Article  CAS  Google Scholar 

  64. Chamorro E, Pérez P, Domingo LR (2013) On the nature of Parr functions to predict the most reactive sites along organic polar reactions. Chem Phys Lett 582:141–143. https://doi.org/10.1016/j.cplett.2013.07.020

    Article  CAS  Google Scholar 

  65. Chamorro E, Pérez P (2005) Condensed-to-atoms electronic Fukui functions within the framework of spin-polarized density-functional theory. J Chem Phys 123(11):114107

    Article  Google Scholar 

  66. Galván M, Vela A, Gázquez JL (1988) Chemical reactivity in spin-polarized density functional theory. J Phys Chem 92(22):6470–6474. https://doi.org/10.1021/j100333a056

    Article  Google Scholar 

  67. Morell C, Grand A, Toro-Labbe A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109(1):205–212

    Article  CAS  Google Scholar 

  68. Morell C, Grand A, Toro-Labbé A (2006) Theoretical support for using the Δf (r) descriptor. Chem Phys Lett 425(4–6):342–346

    Article  CAS  Google Scholar 

  69. Abdoul-Carime H, et al. (2014). Velocity of a molecule evaporated from a water nanodroplet: Maxwell–Boltzmann statistics versus non-ergodic events (Angew. Chem. Int. Ed. 54, 14685–14689). Angew. Chem. Int. Ed.

  70. Mechachti F, Lakehal S, Lakehal A, Morell C, Merzoud L, Chermette H (2021) Predicted structure and selectivity of 3d transition metal complexes with glutamic N, N-bis (carboxymethyl) acid. New J Chem 45(39):18366–18378

    Article  CAS  Google Scholar 

  71. Stoyanov ES, Stoyanova IV, Reed CA (2010) The structure of the hydrogen ion (Haq+) in water. J Am Chem Soc 132(5):1484–1485

    Article  CAS  Google Scholar 

  72. Berthias F et al (2015) Proton migration in clusters consisting of protonated pyridine solvated by water molecules. ChemPhysChem 16(15):3151–3155

    Article  CAS  Google Scholar 

  73. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396

    Article  CAS  Google Scholar 

  74. Schuster P (1976) In the hydrogen bond. In: Schuster P, Zundel G, Sandorfy C (eds) vol 2. North-Holland, Amsterdam

  75. Eigen M (1964) Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: elementary processes. Angew Chemie Int Ed English 3(1):1–19

    Article  Google Scholar 

  76. Agmon N (1996) Hydrogen bonds, water rotation and proton mobility. J Chim Phys Phys Chim Biol 93:1714–1736

    Article  CAS  Google Scholar 

  77. Walrafen GE, Fisher MR, Hokmabadi MS, Yang W (1986) Temperature dependence of the low-and high-frequency Raman scattering from liquid water. J Chem Phys 85(12):6970–6982

    Article  CAS  Google Scholar 

  78. Carey DM, Korenowski GM (1998) Measurement of the Raman spectrum of liquid water. J Chem Phys 108(7):2669–2675

    Article  CAS  Google Scholar 

  79. Reed CA (2013) Myths about the proton. The nature of H+ in condensed media. Acc Chem Res 46(11):2567–2575

    Article  CAS  Google Scholar 

  80. Śmiechowski M, Stangret J (2006) Proton hydration in aqueous solution: Fourier transform infrared studies of HDO spectra. J Chem Phys 125(20):204508

    Article  Google Scholar 

  81. Rees DC, Lipscomb WN (1982) Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5 Å resolution. J Mol Biol 160(3):475–498

    Article  CAS  Google Scholar 

  82. Lamine W et al (2018) Unexpected structure of a Helical N4-Schiff-base Zn (II) complex and its demetallation: experimental and theoretical studies. ChemPhysChem 19(21):2938–2946

    Article  CAS  Google Scholar 

  83. De Grotthuss CJT (2006) Memoir on the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity. Biochim Biophys Acta (BBA) Bioenerg 1757(8):871–875

    Article  CAS  Google Scholar 

  84. Marx D (2006) Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7(9):1848–1870

    Article  CAS  Google Scholar 

  85. Tuckerman M, Laasonen K, Sprik M, Parrinello M (1995) Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J Chem Phys 103(1):150–161

    Article  CAS  Google Scholar 

  86. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115(19):2315–2372

    Article  CAS  Google Scholar 

  87. Chan B, Gilbert ATB, Gill PMW, Radom L (2014) Performance of density functional theory procedures for the calculation of proton-exchange barriers: unusual behavior of M06-type functionals. J Chem Theory Comput 10(9):3777–3783

    Article  CAS  Google Scholar 

  88. Karton A, O’Reilly RJ, Radom L (2012) Assessment of theoretical procedures for calculating barrier heights for a diverse set of water-catalyzed proton-transfer reactions. J Phys Chem A 116(16):4211–4221

    Article  CAS  Google Scholar 

  89. Karton A, O’Reilly RJ, Chan B, Radom L (2012) Determination of barrier heights for proton exchange in small water, ammonia, and hydrogen fluoride clusters with G4 (MP2)-type, MPn, and SCS-MPn procedures. A Caveat. J Chem Theory Comput 8(9):3128–3136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NL acknowledges the financial support of the Algerian Ministry of Higher Education and Scientific Research and the DGRSDT (Research Project B00L01UN280120220002). The GENCI/CINES (Project cpt2130) and the PSMN of the ENS-Lyon are acknowledged for HPC resources/computer time. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

DT, NL, and HC contributed to conceptualization, methodology, and investigation. NL and HC performed writing—original draft preparation. CM, LM, NL, and HC performed writing—review and editing. DT, NL, HM, and BW performed experimental measurements. NM, NO, and CM provided resources. DT, NL, LM, and HC performed data curation. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Nadjia Latelli or Henry Chermette.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1830 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taharchaouche, D., Latelli, N., Merouani, H. et al. Degradation by hydrolysis of three triphenylmethane dyes: DFT and TD-DFT study. Theor Chem Acc 142, 10 (2023). https://doi.org/10.1007/s00214-022-02950-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02950-1

Keywords

Navigation