Log in

Theoretical probing into complexation of Si-5LIO-1-Cm-3,2-HOPO with Uranyl

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

To design an effective Uranium decorporation agent for chelation therapy, it is crucial to understand coordination chemistry properties of decorporation agent and the complex. In this paper, a new containing-silicon hydroxypyridinone ligand with two different configurations Si-5LIO-1-Cm-3,2-HOPO(A) and Si-5LIO-1-Cm-3,2-HOPO(B) was designed for capturing Uranium using Carbon/Silicon exchange method and the complexation mechanisms of them with uranyl were systematically investigated by DFT calculations and wave function analysis methods. It was found that the complexes’ structures were greatly changed after "Carbon/Silicon exchange", the uranyl chelation selectivity coefficients toward Si-5LIO-1-Cm-3,2-HOPO(A)/Si-5LIO-1-Cm-3,2-HOPO(B) in different solvents were all over than 99%. The chelation ability of Si-5LIO-1-Cm-3,2-HOPO(A) to uranyl was much stronger than those of Si-5LIO-1-Cm-3,2-HOPO(B) and 5LIO-1-Cm-3,2-HOPO. The complex UO2-Si-5LIO-1-Cm-3,2-HOPO(A) with NH…O = C intramolecular hydrogen bond showed higher binding energy of the ligand with uranyl than the others. The figures that π electrons transfer from pyridine to oxygen donors to chelate with U(VI) were revealed graphically and quantitatively. This study represents a lot of valuable information of actinides coordination chemistry and provide a guidance for the design of Uranium capturing agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gorden AE, Xu J, Raymond KN, Durbin P (2003) Rational design of sequestering agents for plutonium and other actinides. Chem Rev 103(11):4207–4282. https://doi.org/10.1021/cr990114x

    Article  CAS  PubMed  Google Scholar 

  2. Durbin P, Kullgren B, Xu J, Raymond K (1998) Development of decorporation agents for the actinides. Radiat Prot Dosim 79(1–4):433–443. https://doi.org/10.1093/oxfordjournals.rpd.a032445

    Article  CAS  Google Scholar 

  3. Durbin PW, Kullgren B, Xu J, Raymond KN (1997) New agents for in vivo chelation of uranium (VI): efficacy and toxicity in mice of multidentate catecholate and hydroxypyridinonate ligands. Health Phys 72(6):865–879. https://doi.org/10.1097/00004032-199706000-00006

    Article  CAS  PubMed  Google Scholar 

  4. Jarvis EE, An DD, Kullgren B, Abergel RJ (2012) Significance of single variables in defining adequate animal models to assess the efficacy of new radionuclide decorporation agents: using the contamination dose as an example. Drug Develop Res 73(5):281–289. https://doi.org/10.1002/ddr.21020

    Article  CAS  Google Scholar 

  5. Laurent B, Florence M (2021) Treatment of radiological contamination: a review. J Radiol Prot 41(4):S427–S437. https://doi.org/10.1088/1361-6498/ac241b

    Article  CAS  Google Scholar 

  6. Kullgren B, Jarvis EE, An DD, Abergel RJ (2013) Actinide chelation: biodistribution and in vivo complex stability of the targeted metal ions. Toxicol Mech Method 23(1):18–26. https://doi.org/10.3109/15376516.2012.728641

    Article  CAS  Google Scholar 

  7. Gomez M, Domingo J, Llobet J, Paternain J (1988) Effectiveness of chelation therapy with time after acute vanadium intoxication. J Appl Toxicol 8(6):439–444. https://doi.org/10.1002/jat.2550080609

    Article  CAS  PubMed  Google Scholar 

  8. Avtandilashvili M, Tolmachev SY (2021) Four-decade follow-up of a plutonium-contaminated puncture wound treated with Ca-DTPA. J Radiol Prot 41(4):1122–1144. https://doi.org/10.1088/1361-6498/ac04b8

    Article  CAS  Google Scholar 

  9. Dumit S, Avtandilashvili M, Strom DJ, McComish SL, Tabatadze G, Tolmachev SY (2019) Improved modeling of plutonium-DTPA decorporation. Radiat Res 191(2):201–210. https://doi.org/10.1667/RR15188.1

    Article  CAS  PubMed  Google Scholar 

  10. Miccoli L, Menetrier F, Laroche P, Gremy O (2019) Chelation treatment by early inhalation of liquid aerosol DTPA for removing plutonium after rat lung contamination. Radiat Res 192(6):630–639. https://doi.org/10.1667/RR15451.1

    Article  CAS  PubMed  Google Scholar 

  11. Grémy O, Laurent D, Coudert S, Griffiths NM, Miccoli L (2016) Decorporation of Pu/Am actinides by chelation therapy: new arguments in favor of an intracellular component of DTPA action. Radiat Res 185(6):568–579. https://doi.org/10.1667/RR14193.1

    Article  CAS  PubMed  Google Scholar 

  12. Grémy O, Miccoli L, Lelan F, Bohand S, Cherel M, Mougin-Degraef M (2018) Delivery of DTPA through liposomes as a good strategy for enhancing plutonium decorporation regardless of treatment regimen. Radiat Res 189(5):477–489. https://doi.org/10.1667/RR14968.1

    Article  PubMed  Google Scholar 

  13. Durbin PW, Kullgren B, Ebbe SN, Xu J, Raymond KN (2000) Chelating agents for uranium (VI): 2. Efficacy and toxicity of tetradentate catecholate and hydroxypyridinonate ligands in mice. Health Phys 78(5):511–521

    Article  CAS  PubMed  Google Scholar 

  14. Ye GY, Roques J, Solari PL, Den Auwer C, Jeanson A, Brandel J, Charbonniere LJ, Wu WS, Simoni E (2021) Structural and thermodynamics studies on polyaminophosphonate ligands for uranyl decorporation. Inorg Chem 60(4):2149–2159. https://doi.org/10.1021/acs.inorgchem.0c02145

    Article  CAS  PubMed  Google Scholar 

  15. Carter KP, Smith KF, Tratnjek T, Deblonde GJP, Moreau LM, Rees JA, Booth CH, Abergel RJ (2021) Controlling the reduction of chelated uranyl to stable tetravalent uranium coordination complexes in aqueous solution. Inorg Chem 60(2):974–982. https://doi.org/10.1021/acs.inorgchem.0c03088

    Article  CAS  Google Scholar 

  16. Wang XM, Chen L, Bai ZL, Zhang D, Guan JW, Zhang YJ, Shi C, Diwu J (2021) In vivo uranium sequestration using a nanoscale metal-organic framework. Angew Chem Int Edit 60(3):1646–1650. https://doi.org/10.1002/anie.202012512

    Article  CAS  Google Scholar 

  17. Pallares RM, Carter KP, Zeltmann SE, Tratnjek T, Minor AM, Abergel RJ (2020) Selective lanthanide sensing with gold nanoparticles and hydroxypyridinone chelators. Inorg Chem 59(3):2030–2036. https://doi.org/10.1021/acs.inorgchem.9b03393

    Article  CAS  PubMed  Google Scholar 

  18. Coimbra JTS, Bras NF, Fernandes PA, Rangel M, Ramos MJ (2019) A computational study on the redox properties and binding affinities of iron complexes of hydroxypyridinones. J Mol Model 25(6):172. https://doi.org/10.1007/s00894-019-4037-0

    Article  CAS  PubMed  Google Scholar 

  19. Jiang XY, Zhou T, Bai RR, **e YY (2020) Hydroxypyridinone-based iron chelators with broad-ranging biological activities. J Med Chem 63(23):14470–14501. https://doi.org/10.1021/acs.jmedchem.0c01480

    Article  CAS  PubMed  Google Scholar 

  20. Aaseth J, Nurchi VM, Andersen O (2021) Clinical therapy of patients contaminated with polonium or plutonium. Curr Med Chem 28(35):7238–7246. https://doi.org/10.2174/0929867327666201020152253

    Article  CAS  PubMed  Google Scholar 

  21. Mohammadi M, Alirezapour F, Khanmohammadi A (2021) DFT calculation of the interplay effects between cation-pi and intramolecular hydrogen bond interactions of mesalazine drug with selected transition metal ions (Mn+, Fe2+, Co+, Ni2+, Cu+, Zn2+). Theor Chem Acc 140(8):104. https://doi.org/10.1007/s00214-021-02813-1

    Article  CAS  Google Scholar 

  22. Weitl FL, Raymond KN (1980) Specific sequestering agents for the actinides .3. Polycatecholate ligands derived from 2, 3-dihydroxy-5-sulfobenzoyl conjugates of diaza-and tetraazaalkanes. J Amer Chem Soc 102(7):2289–2293. https://doi.org/10.1021/ja00527a026

    Article  CAS  Google Scholar 

  23. Laurino JA, Knapp S, Schugar HJ (1978) A convenient synthesis of 3, 3’, 3’’-triaminotripropylamine tetrahydrochloride-0.5 water. Inorg Chem 17(7):2027–2028. https://doi.org/10.1021/ic50185a070

    Article  CAS  Google Scholar 

  24. Cason J, Dyke GO Jr (1950) Preparation of 2, 3-dihydroxybenzoic acid. J Amer Chem Soc 72(1):621–622. https://doi.org/10.1021/ja01157a501

    Article  CAS  Google Scholar 

  25. Xu J, Whisenhunt DW, Veeck AC, Uhlir LC, Raymond KN (2003) Thorium (IV) complexes of bidentate hydroxypyridinonates1. Inorg Chem 42(8):2665–2674. https://doi.org/10.1021/ic0259888

    Article  CAS  PubMed  Google Scholar 

  26. Turcot I, Stintzi A, Xu J, Raymond KN (2000) Fast biological iron chelators: kinetics of iron removal from human diferric transferrin by multidentate hydroxypyridonates. J Biol Inorg Chem 5(5):634–641. https://doi.org/10.1007/s007750000149

    Article  CAS  PubMed  Google Scholar 

  27. Xu J, Durbin PW, Kullgren B, Ebbe SN, Uhlir LC, Raymond KN (2002) Synthesis and initial evaluation for in vivo chelation of Pu (IV) of a mixed octadentate spermine-based ligand containing 4-carbamoyl-3-hydroxy-1-methyl-2 (1 H)-pyridinone and 6-carbamoyl-1-hydroxy-2 (1 H)-pyridinone. J Med Chem 45(18):3963–3971. https://doi.org/10.1021/jm010564t

    Article  CAS  PubMed  Google Scholar 

  28. Ozsvath A, Dioszegi R, Benyei AC, Buglyo P (2020) Pd(II)-Complexes of a novel pyridinone based tripeptide conjugate: solution and solid state studies. Dalton T 49(27):9254–9267. https://doi.org/10.1039/d0dt01396j

    Article  CAS  Google Scholar 

  29. Kelley MP, Deblonde GJP, Su J, Booth CH, Abergel RJ, Batista ER, Yang P (2018) Bond Covalency and oxidation state of actinide ions complexed with therapeutic chelating agent 3,4,3-LI(1,2-HOPO). Inorg Chem 57(9):5352–5363. https://doi.org/10.1021/acs.inorgchem.8b00345

    Article  CAS  PubMed  Google Scholar 

  30. Sadhu B, Mishra V (2018) The coordination chemistry of lanthanide and actinide metal ions with hydroxypyridinone- based decorporation agents: orbital and density based analyses. Dalton T 47(46):16603–16615. https://doi.org/10.1039/c8dt03262a

    Article  CAS  Google Scholar 

  31. Sadhu B, Dolg M, Kulkarni MS (2020) Periodic trends and complexation chemistry of tetravalent actinide ions with a potential actinide decorporation agent 5-LIO(Me-3,2-HOPO): a relativistic density functional theory exploration. J Comput Chem 41(15):1427–1435. https://doi.org/10.1002/jcc.26186

    Article  CAS  PubMed  Google Scholar 

  32. Sturzbecher-Hoehne M, Deblonde GJP, Abergel RJ (2013) Solution thermodynamic evaluation of hydroxypyridinonate chelators 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO) for UO2(VI) and Th(IV) decorporation. Radiochim Acta 101(6):359–366. https://doi.org/10.1524/ract.2013.2047

    Article  CAS  Google Scholar 

  33. Bunin DI, Chang PY, Doppalapudi RS, Riccio ES, An D, Jarvis EE, Kullgren B, Abergel RJ (2013) Dose-dependent efficacy and safety toxicology of hydroxypyridinonate actinide decorporation agents in rodents: towards a safe and effective human dosing regimen. Radiat Res 179(2):171–182. https://doi.org/10.1667/Rr3115.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brulfert F, Safi S, Jeanson A, Foerstendorf H, Weiss S, Berthomieu C, Sauge-Merle S, Simoni E (2017) Enzymatic activity of the CaM-PDE1 system upon addition of actinyl ions. J Inorg Biochem 172:46–54. https://doi.org/10.1016/j.**orgbio.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  35. Shi C, Wang XM, Wan JM, Zhang D, Yi X, Bai ZL, Yang K, Juan DW, Chai ZF, Wango S (2018) 3,2-Hydroxypyridinone-grafted chitosan oligosaccharide nanoparticles as efficient decorporation agents for simultaneous removal of uranium and radiation-induced reactive oxygen species in vivo (vol 29, pg 3896, 2018). Bioconjugate Chem 29(12):4176–4177. https://doi.org/10.1021/acs.bioconjchem.8b00851

    Article  CAS  Google Scholar 

  36. Wang XM, Dai X, Shi C, Wan JM, Silver MA, Zhang LJ, Chen LH, Yi X, Chen BZ, Zhang D, Yang K, Juan DW, Wang JQ, Xu YJ, Zhou RH, Chai ZF, Wang SA (2019) A 3,2-Hydroxypyridinone-based decorporation agent that removes uranium from bones in vivo. Nat Commun 10:2570. https://doi.org/10.1038/s41467-019-10276-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johansson T, Weidolf L, Popp F, Tacke R, Jurva U (2010) In vitro metabolism of haloperidol and sila-haloperidol: new metabolic pathways resulting from carbon/silicon exchange. Drug Metab Dispos 38(1):73–83. https://doi.org/10.1124/dmd.109.028449

    Article  CAS  PubMed  Google Scholar 

  38. Tacke R, Nguyen B, Burschka C, Lippert WP, Hamacher A, Urban C, Kassack MU (2010) Sila-trifluperidol, a silicon analogue of the dopamine (D2) receptor antagonist trifluperidol: synthesis and pharmacological characterization. Organometallics 29(7):1652–1660. https://doi.org/10.1021/om901011t

    Article  CAS  Google Scholar 

  39. Munster PN, Daud AI (2011) Preclinical and clinical activity of the topoisomerase I inhibitor, karenitecin, in melanoma. Expert Opin Investig Drugs 20(11):1565–1574. https://doi.org/10.1517/13543784.2011.617740

    Article  CAS  PubMed  Google Scholar 

  40. Daiss JO, Burschka C, Mills JS, Montana JG, Showell GA, Warneck JB, Tacke R (2006) Sila-venlafaxine, a sila-analogue of the serotonin/noradrenaline reuptake inhibitor venlafaxine: synthesis, crystal structure analysis, and pharmacological characterization. Organometallics 25(5):1188–1198. https://doi.org/10.1021/om058051y

    Article  CAS  Google Scholar 

  41. Lu T, Chen Q (2021) Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions. Chem Method 1(5):231–239. https://doi.org/10.1002/cmtd.202100007

    Article  CAS  Google Scholar 

  42. Schmider H, Becke A (2000) Chemical content of the kinetic energy density. J Mol Struct (Thoechem) 527(1–3):51–61. https://doi.org/10.1016/S0166-1280(00)00477-2

    Article  CAS  Google Scholar 

  43. Lu T, Chen F (2013) Bond order analysis based on the laplacian of electron density in fuzzy overlap space. J Phys Chem A 117(14):3100–3108. https://doi.org/10.1021/jp4010345

    Article  CAS  PubMed  Google Scholar 

  44. Mayer I (1983) Charge, bond order and valence in the AB initio SCF theory. Chem Phys Lett 97(3):270–274. https://doi.org/10.1016/0009-2614(83)80005-0

    Article  CAS  Google Scholar 

  45. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  46. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H (2016) Gaussian 16 rev. B. 01. Wallingford, CT 2016:16

    Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  48. Beck AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  Google Scholar 

  49. Kovacs A, Konings RJM, Gibson JK, Infante I, Gagliardi L (2015) Quantum chemical calculations and experimental investigations of molecular actinide oxides. Chem Rev 115(4):1725–1759. https://doi.org/10.1021/cr500426s

    Article  CAS  PubMed  Google Scholar 

  50. Schafer A, Horn H, Ahlrichs R (1992) Fully optimized contracted gaussian-basis sets for atoms Li to Kr. J Chem Phys 97(4):2571–2577. https://doi.org/10.1063/1.463096

    Article  Google Scholar 

  51. Zheng JJ, Xu XF, Truhlar DG (2011) Minimally augmented karlsruhe basis sets. Theor Chem Acc 128(3):295–305. https://doi.org/10.1007/s00214-010-0846-z

    Article  CAS  Google Scholar 

  52. Cao XY, Dolg M (2004) Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Mol Struct Theochem 673(1–3):203–209. https://doi.org/10.1016/j.theochem.2003.12.015

    Article  CAS  Google Scholar 

  53. Cao XY, Dolg M (2006) Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems. Coord Chem Rev 250(7–8):900–910. https://doi.org/10.1016/j.ccr.2006.01.003

    Article  CAS  Google Scholar 

  54. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  55. Woon DE, Dunning TH (1993) Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J Chem Phys 98(2):1358–1371. https://doi.org/10.1063/1.464303

    Article  CAS  Google Scholar 

  56. Wolf A, Reiher M, Hess BA (2002) The generalized douglas-kroll transformation. J Chem Phys 117(20):9215–9226. https://doi.org/10.1063/1.1515314

    Article  CAS  Google Scholar 

  57. Dan D, Celis-Barros C, White FD, Sperling JM, Albrecht-Schmitt TE (2019) Origin of selectivity of a triazinyl ligand for americium(III) over neodymium(III). Chem A Eur J 25(13):3248–3252. https://doi.org/10.1002/chem.201806070

    Article  CAS  Google Scholar 

  58. Pantazis DA, Neese F (2011) All-electron scalar relativistic basis sets for the actinides. J Chem Theory Comput 7(3):677–684. https://doi.org/10.1021/ct100736b

    Article  CAS  Google Scholar 

  59. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics 19 (4):553–566. https://doi.org/10.1080/00268977000101561

  60. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  61. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  62. Dapprich S, Frenking G (1995) Investigation of donor-acceptor interactions: a charge decomposition analysis using fragment molecular orbitals. J Phys Chem 99(23):9352–9362. https://doi.org/10.1021/j100023a009

    Article  CAS  Google Scholar 

  63. Huo YJ, Zhu HQ, He X, Fang SH, Wang W (2021) Quantum Chemical calculation of the effects of H2O on oxygen functional groups during coal spontaneous combustion. ACS Omega 6(39):25594–25607. https://doi.org/10.1021/acsomega.1c03673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ramanathan N, Bootharajan M, Kumar GVSA, Sundararajan K, Murthy ASR, Chandra S, Jayaraman V (2022) Interaction of krypton and xenon with sodium and activated charcoal: identification and modeling using gas chromatography and density functional theory. J Nucl Mater 558:153326. https://doi.org/10.1016/j.jnucmat.2021.153326

    Article  CAS  Google Scholar 

  65. Guo ZY, Wei CL, Wang SF, Qi F, He Z, Majeed U, Huang J (2022) Crystal structure analysis of three ( E )- N -(3-methyl, 5-fluorinephenyl)-2-(4-substitute d b enzylidene)thiosemicarbazone derivatives: experimental and theoretical studies. J Mol Struct 1247:131383. https://doi.org/10.1016/j.molstruc.2021.131383

    Article  CAS  Google Scholar 

  66. **ao Y, Nie CM, **ao XL, Liao LF, Yang R, Tao XB, Mao Y (2021) Theoretical insights into chiral PMAADs coordinated with Am(III)/Eu(III) and separation selectivity enhanced by chiral-at Am(III)/Eu(III) complexes. J Radioanal Nucl Chem 328(1):205–216. https://doi.org/10.1007/s10967-021-07653-8

    Article  CAS  Google Scholar 

  67. Yang R, **ao Y, Tao XB, Ma MJ, Wu ZL, Liao LF, **ao XL, Nie CM (2021) Insights into complexation and enantioselectivity of uranyl-2-(2-hydroxy-3-methoxyphenyl)-9-(2-hydroxyphenyl)thiopyrano[3,2-h]thiochromene-4,7-dione with R/S-organophosphorus pesticides. Appl Organomet Chem 35(9):e6331. https://doi.org/10.1002/aoc.6331

    Article  CAS  Google Scholar 

  68. Thirunavukkarasu M, Balaji G, Muthu S, Sakthivel S, Prabakaran P, Irfan A (2022) Theoretical conformations studies on 2-Acetyl-gamma-butyrolactone structure and stability in aqueous phase and the solvation effects on electronic properties by quantum computational methods. Comput Theor Chem 1208:113534. https://doi.org/10.1016/j.comptc.2021.113534

    Article  CAS  Google Scholar 

  69. Yang MC, Su MD (2020) A theoretical study of the reactivity of ethene and benzophenone with a hyper-coordinated alkene containing a so-called E=E (E = C, Si, Ge, Sn, and Pb) unit. Dalton T 49(36):12842–12853. https://doi.org/10.1039/d0dt01914c

    Article  CAS  Google Scholar 

  70. Yoshida T, Ahsan HM, Zhang HT, Izuogu DC, Abe H, Ohtsu H, Yamaguchi T, Breedlove BK, Thom AJW, Yamashita M (2020) Ionic-caged heterometallic bismuth-platinum complex exhibiting electrocatalytic CO2 reduction. Dalton T 49(8):2652–2660. https://doi.org/10.1039/c9dt04817k

    Article  CAS  Google Scholar 

  71. Zhang CY, Han XZ, Korshin GV, Kuznetsov AM, Yan MQ (2021) Interpretation of the differential UV-visible absorbance spectra of metal-NOM complexes based on the quantum chemical simulations for the model compound esculetin. Chemosphere 276:130043. https://doi.org/10.1016/j.chemosphere.2021.130043

    Article  CAS  PubMed  Google Scholar 

  72. Kaviani S, Shahab S, Sheikhi M, Potkin V, Zhou HW (2021) A DFT study of Se-decorated B12N12 nanocluster as a possible drug delivery system for ciclopirox. Comput Theor Chem 1201:113246. https://doi.org/10.1016/j.comptc.2021.113246

    Article  CAS  Google Scholar 

  73. Asif M, Sajid H, Ayub K, Ans M, Mahmood T (2022) A first principles study on electrochemical sensing of highly toxic pesticides by using porous C4N nanoflake. J Phys Chem Solid 160:110345. https://doi.org/10.1016/j.jpcs.2021.110345

    Article  CAS  Google Scholar 

  74. Yar M, Hashmi MA, Khan A, Ayub K (2020) Carbon nitride 2-D surface as a highly selective electrochemical sensor for V-series nerve agents. J Mol Liq 311:113357. https://doi.org/10.1016/j.molliq.2020.113357

    Article  CAS  Google Scholar 

  75. Dai LL, Nie CM, Sun WZ, **ao Y, Mao Y, Wu ZL, Liao LF, **ao XL (2020) Complexation and enantioselectivity of sulfur/selenium-substituted uranyl-salophens with R/S-chiral lactone for RRS/SSR-3, 5-Dimethyl-2-(3-fluorophenyl)-2-morpholinols. J Radioanal Nucl Chem 324(3):993–1006. https://doi.org/10.1007/s10967-020-07137-1

    Article  CAS  Google Scholar 

  76. Sun WZ, Dai LL, Kong XH, Mao Y, Wu ZL, Liao LF, **ao XL, Nie CM (2020) Theoretical investigation into coordination and selectivity of uranyl-unilateral benzotriazole salophens (X = O/S) for R/S-triadimefons. Appl Organomet Chem 34(4):e5486. https://doi.org/10.1002/aoc.5486

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (No.11475079), the Natural Science Foundation of Hunan Province (No. 2020JJ6049). The computational work was supported by the High-Performance Computing Cluster of University of South China. Thanks to Dr Zou of Gaussian company for sharing the experience about computational details.

Funding

National Natural Science Foundation of China, 11475079, Li-Fu Liao, Natural Science Foundation of Hunan Province, 2020JJ6049, Chang-ming Nie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ming Nie.

Ethics declarations

Competing of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., **ao, Y., Liu, LF. et al. Theoretical probing into complexation of Si-5LIO-1-Cm-3,2-HOPO with Uranyl. Theor Chem Acc 141, 59 (2022). https://doi.org/10.1007/s00214-022-02916-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02916-3

Keywords

Navigation