Log in

Tetradentate square-planar acetylumbelliferone–nickel (II) complex formation: a DFT and TD-DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

During the study of electrodeposition of nickel, natural coumarins were used as brighteners and caused an improvement in the surface of deposited plates. We thought about the mechanism by which the coumarins adhere to nickel and the most probable chemical mechanism would be an organometallic complex formation between these coumarins and the transition metal. In this study, the formation of a highly stable complex between a coumarin derivative, acetylumbelliferone and nickel, is investigated theoretically in aqueous solution, using the Gaussian 09 and DFT method. The energies of the HOMO and LUMO boundary orbitals, the atomic charges and the molecular electrostatic potentials of the acetylumbelliferone–nickel (Ni-AC4) complex were determined, analyzed and allowed us to locate the nucleophilic and electrophilic sites of attack for the free donor and the complex. Time-dependent density functional theory (TD-DFT) with PCM was used to calculate the electronic transitions of formed complex using the ground state geometry from optimized complexes. Charge transfer between metal and ligand is the most important factor for the stabilization of the complex (Ni-(AC) 4); NBO analysis confirmed this finding and indicated that the 3d orbital energy level order is dx2-y2 > dz2 > dxz, dyz > dxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dehari D, Jashari A, Dehari S, Shabani A (2012) New complexes of nickel (II) using 4-hydroxy-2-oxo-2H-chromene-3-carboxamide as ligand. World Acad Sci Eng Technol 6:1364–67

    Google Scholar 

  2. Anees Rahman KN, Haribabu J, Balachandran C, Bhuvanesh NSP, Ramasamy B, Karvembua R, Sreekanth A (2017) Copper, nickel and zinc complexes of 3-acetyl coumarin thiosemicarbazone: Synthesis, characterization and in vitro evaluation of cytotoxicity and DNA/protein binding properties. Polyhedron 135:26–35. https://doi.org/10.1016/j.poly.2017.06.044

    Article  CAS  Google Scholar 

  3. Trendafilova N, Kostova I, Manolov I, Bauer G, Mihaylov T, Georgieva I (2004) Synthesis and spectroscopic study of a new lanthanum(III) complex of 3,3′-benzylidenedi-4-hydroxycoumarin. Synth React Inorg M 34:1635–1650. https://doi.org/10.1081/SIM-200026618

    Article  CAS  Google Scholar 

  4. Grazula M, Budzisz E (2009) Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord Chem Rev 25:32588–32598

    Google Scholar 

  5. Refat MS, El-Deen IM, Anwer ZM, El-Ghol S (2009) Bivalent transition metal complexes of coumarin-3-yl thiosemicarbazone derivatives: Spectroscopic, antibacterial activity and thermogravimetric studies, antibacterial activity and thermogravimetric studies. J Molecular Struct 920:149–162

    Article  CAS  Google Scholar 

  6. Henkea H, Kandiollera W, Hanif M, Kepplera BK, Hartinger CG (2012) Organometallic ruthenium and osmium compounds of pyridin-2-and-4-ones as potential anticancer agents. Chem Biodivers 9:1718–1727. https://doi.org/10.1002/cbdv.201200005

    Article  CAS  Google Scholar 

  7. Gasser G, Metzler-Nolte N (2012) The potential of organometallic complexes in medicinal chemistry. Curr Opin Chem Biol. 16:84–91. https://doi.org/10.1016/j.cbpa.2012.01.013

    Article  CAS  PubMed  Google Scholar 

  8. Guomundsson A, Bäckvall JE (2020) On the use of iron in organic chemistry. Molecules 25:1349. https://doi.org/10.3390/molecules25061349

    Article  CAS  Google Scholar 

  9. Nicolaou KC (2014) Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory. Proc R Soc 470:1–17. https://doi.org/10.1098/rspa.2013.0690

    Article  CAS  Google Scholar 

  10. Boit TB, Bulger AS, Dander JE, Garg NK (2020) Activation of C−O and C−N bonds using non-precious-metal catalysis. ACS Catal 10:12109–12126. https://doi.org/10.1021/acscatal.0c03334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu L, Wang X, Xu W, Farzaneh F, Xu R (2009) The structure and pharmacological functions of coumarins and their derivatives. Curr Med Chem 16:4236–4260

    Article  CAS  Google Scholar 

  12. Borges F, Roleira F, Milhazes N, Santana L, Uriarte E (2005) Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 12:887–916. https://doi.org/10.2174/0929867053507315

    Article  CAS  PubMed  Google Scholar 

  13. Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG (2015) Eds.; In Tech: Venketeshwer Rao. Vol. 1, Chapter 5, pp, 113–140. https://doi.org/10.5772/59982.

  14. Manjunatha M, Naik VH, Kulkarni AD, Patil SA (2011) DNA cleavage, antimicrobial, antiinflammatory anthelmintic activities, and spectroscopic studies of Co(II), Ni(II), and Cu(II) complexes of biologically potential coumarin schiff bases. J Coord Chem 64:4264–4275

    Article  CAS  Google Scholar 

  15. Hu Y, Chen W, Shen Y, Zhu B, Wang GX (2019) Synthesis and antiviral activity of coumarin derivatives against infectious hematopoietic necrosis virus. Bioorg Med Chem Lett 29:1749–1755. https://doi.org/10.5772/59982

    Article  CAS  PubMed  Google Scholar 

  16. Nofal ZM, El-Zahar MI, El-Karim SS (2000) Novel coumarin derivatives with expected biological activity. Molecules 5:99–113. https://doi.org/10.3390/50200099

    Article  CAS  Google Scholar 

  17. Raev LD, Voinov E, Ivanov IC, Popov D (1990) Antitumor activity of some coumarin derivatives. Pharmazie 45:696–698

    CAS  PubMed  Google Scholar 

  18. El-Sayed A, Abd-Allah O (2001) Synthetic and biological studies on coumarinhydrazone derivatives. Phosporus Sulfur Silicon Relat Elem 170:75–86

    Article  CAS  Google Scholar 

  19. Giota AE, Fylaktakidou K, Litina D, Litinas K, Nicolaides D (2001) Synthesis and biological evaluation of several 3-(coumarin4-yl)tetrahydroisoxazole and 3-(coumarin-4-yl)dihydropyrazole derivatives. J Heterocyclic Chem 38:717–722. https://doi.org/10.1002/jhet.5570380329

    Article  Google Scholar 

  20. Balcıoğlu S, lgun Karataş MO, Ateş B, Alıcı B, Özdemir İ (2020) Therapeutic potential of coumarin bearing metal complexes: where are we headed? Bioorg Med Chem Lett 30:15–30. https://doi.org/10.1016/j.bmcl.2019.126805

    Article  CAS  Google Scholar 

  21. Carneiro A, Matos MJ, Uriarte E, Santana L (2021) Topics on coumarin and Its derivatives. Molecules 26:501. https://doi.org/10.3390/molecules26020501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Balewski Ł, Szulta S, Jalińska A, Kornicka A (2021) Recent advances in coumarin-metal complexes with biological properties. Front Chem 9:781779. https://doi.org/10.3389/fchem.2021.781779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang M, Wang LF, Li YZ, Li QX (2001) Antitumour activity of transition metal complexes with the thiosemicarbazone derived from 3-acetylumbelliferone. Transit Met Chem 26:307–310. https://doi.org/10.1023/A:1007159301849

    Article  CAS  Google Scholar 

  24. Kulkarni A, Avaji PG, Bagihalli GB, Patil SA, Badami PS (2009) Synthesis, spectral, electrochemical and biological studies of Co(II), Ni(II) and Cu(II) complexes with Schiff bases of 8-formyl-7-hydroxy-4- methyl coumarin. J Coord Chem 62:481–492

    Article  CAS  Google Scholar 

  25. Ashrafuzzaman MD, Camellia FK, Al Mahmud A, Joy Pramanik MD, Nahar K, Masuqul Haque MD, Kudrat-E-Zahan MD (2021) Bioactive mixed ligand metal complexes Of Cu(II), Ni(II), And Zn(II) Ions: synthesis, characterization, antimicrobial and antioxidant properties. J Chil Chem Soc 66:5295–5299. https://doi.org/10.4067/S0717-97072021000305295

    Article  CAS  Google Scholar 

  26. Saddam Hossain Md, Zakaria CM, Roushown A, Kudrat-E-Zahan Md (2017) Selected pharmacological applications of 1st row transition metal complexes. Clin Med Res 6:177–191. https://doi.org/10.11648/j.cmr.20170606.13

    Article  Google Scholar 

  27. Chohan H, Pervez H, Rauf A, Khan KM, Supuran CT (2004) Isatin-derived antibacterial and antifungal compounds and their transition metal complexes. J Enzyme Inhib Med Chem 19:417–423. https://doi.org/10.1080/14756360410001710383

    Article  CAS  PubMed  Google Scholar 

  28. Hashimoto T, Funatsu K, Ohtani A, Asano E, Yamaguchi Y (2019) Cross-coupling reaction of allylic ethers with aryl grignard reagents catalyzed by a nickel pincer complex. Molecules 24:2296. https://doi.org/10.3390/molecules24122296

    Article  CAS  PubMed Central  Google Scholar 

  29. Asano E, Hatayama Y, Kurisu N, Ohtani A, Hashimoto T, Kurihara Y, Ueda K, Ishihara S, Nagano H, Yamaguchi Y (2018) Acetylacetonato-based pincer-type nickel(II) complexes: synthesis and catalysis in cross-couplings of aryl chlorides with aryl grignard reagents. Dalton Trans 47:8003–8012. https://doi.org/10.1039/c8dt01295d

    Article  CAS  PubMed  Google Scholar 

  30. Nasirov FA (2003) Bifunctional nickel- or cobalt-containing catalyst-stabilizers for polybutadiene production and stabilization: (part II)-antioxidative properties and mechanism of catalyst-stabilizer’s action in the processes of thermo- and photooxidative ageing of polybutadiene. Iran Polym J. 12:281–289

    CAS  Google Scholar 

  31. Arslan H, Külcü N (2003) Synthesis and characterization of copper (II), nickel (II) and cobalt (II) complexes with novel thiourea derivatives. Transit Met Chem 28:816–819. https://doi.org/10.1023/A:1026064232260

    Article  CAS  Google Scholar 

  32. Venanzi LM (1958) Tetrahedral complexes of nickel (II) and the factors determining their formation. J inorg nucl chem 8:137–142. https://doi.org/10.1016/0022-1902(58)80175-X

    Article  Google Scholar 

  33. Zhang A, Wang C, Lai X, Zhai X, Pang M, Tunga CH, Wang W (2018) Reactivity of the diphosphinodithio ligated nickel (0) complex toward alkyl halides and resultant nickel(i) and nickel(ii)–alkyl complexes. Dalton Trans 44:15757–15764

    Article  Google Scholar 

  34. Belbah H, Amira-Guebailia H, Affoune AM, Djaghout I, Houache O, Al-Kindi MA (2016) Effect of a natural brightener, daphne gnidium L. on the quality of nickel electroplating from wattsbath. J New Mat Electrochem Systems 19:97–102

    Article  CAS  Google Scholar 

  35. Park T, Park JS, Sim JH, Kim SY (2020) 7-Acetoxycoumarin inhibits LPS-induced inflammatory cytokine synthesis by IκBα degradation and MAPK activation in macrophage cells. Molecules 14:3124. https://doi.org/10.3390/molecules25143124

    Article  CAS  Google Scholar 

  36. Vijayalakshmi A, Sindhu G (2017) Dose responsive efficacy of umbelliferone on lipid peroxidation, anti-oxidant, and xenobiotic metabolism in DMBA-induced oral carcinogenesis. Biomed Pharmacother 88:852–862. https://doi.org/10.1016/j.biopha.2017.01.064

    Article  CAS  PubMed  Google Scholar 

  37. Kumar V, Ahmed D, Verma A, Anwar F, Ali M, Mujeeb M (2013) Umbelliferone β-D-galactopyranoside from Aegle marmelos (L.) corr. an ethnomedicinal plant with antidiabetic, antihyperlipidemic and antioxidative activity. BMC Complement. Altern Med 13:273. https://doi.org/10.1186/1472-6882-13-273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Islam N, Choi RJ, ** SE, Kim YS, Ahn BR, Zhao D, Jung HA, Choi JS (2012) Mechanism of anti-inflammatory activity of umbelliferone 6-carboxylic acid isolated from Angelica decursiva. J Ethnopharmacol 144:175–181. https://doi.org/10.1016/j.jep.2012.08.048

    Article  CAS  PubMed  Google Scholar 

  39. Ng TB, Liu F, Wang ZT (2000) Facile antioxidative activity of natural products from plants. Life Sci 66:709–723. https://doi.org/10.1016/s0024-3205(99)00642-6

    Article  CAS  PubMed  Google Scholar 

  40. Seo HJ, Kim JC (2014) 7-Acetoxycoumarin dimer-incorporated and folate-decorated liposomes: photoresponsive release and in vitro targeting and efficacy. Bioconjugate Chem 25:533–542. https://doi.org/10.1021/bc400521r

    Article  CAS  Google Scholar 

  41. Wallingford CT (2009) Gaussian; Gaussian 09, revision A.1. Inc. GaussView v 5.0.9. Visualizer and Builder.

  42. Torrent M, Solà M, Frenking G (2000) Theoretical studies of some transition-metal-mediated reactions of industrial and synthetic importance. Chem Rev 10:439–493. https://doi.org/10.1021/cr980452i

    Article  CAS  Google Scholar 

  43. Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42:845–856. https://doi.org/10.1039/c2cs35394f

    Article  CAS  PubMed  Google Scholar 

  44. Ramasubbu N, Gnanaguru K, Venkatesan K, Ramamurt VN (1982) Topochemical photodimerization of 7-acetoxycoumarin: the acetoxy group as a steering agent. Can J Chem 60:2159–2161. https://doi.org/10.1139/v82-308

    Article  CAS  Google Scholar 

  45. Jacquemin D, Perpète EA (2006) Time-dependent density functional theory investigation of the absorption, fluorescence, and phosphorescence spectra of solvated coumarins. J Chem Phys 125:164324. https://doi.org/10.1063/1.2361290

    Article  CAS  PubMed  Google Scholar 

  46. Had Al-Kadhemy MF, Rasheed ZS, Salim SR (2016) Fourier transform infrared spectroscopy for irradiation coumarin doped polystyrene polymer films by alpha ray. J Radiat Res Appl Sci 9:321–331. https://doi.org/10.1016/j.jrras.2016.02.004

    Article  CAS  Google Scholar 

  47. Abbott AP, Ballantyne A, Harris RC, Juma JA, Ryder KS, Forrest G (2015) A comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions. Electrochim Acta 176:718–726. https://doi.org/10.1016/j.electacta.2015.07.051

    Article  CAS  Google Scholar 

  48. He W, Zhang BL, Zhou SY, Sun XL, Zhang SY (2007) Facile total synthesis of xanthotoxol. Synth Commun 37:361–367. https://doi.org/10.1080/00397910601038616

    Article  CAS  Google Scholar 

  49. Seo HJ, Kim JC (2014) 7-acetoxycoumarin dimer-incorporated and folate-decorated liposomes: photoresponsive release and in vitro targeting and efficacy. Bioconjug Chem 25:533–542. https://doi.org/10.1021/bc400521r

    Article  CAS  PubMed  Google Scholar 

  50. Shakir M, Abbasi A, Khan AU, Khan SN (2011) Synthesis and spectroscopic studies on the Schiff base ligand derived from condensation of 2-furaldehyde and 3,3 ’-diaminobenzidene, L and its complexes with Co(II), Ni(II), Cu(II) and Zn(II): Comparative DNA binding studies of L and its Cu(II) and Zn(II) complexes. Spectrochim Acta Part A 78:29–35. https://doi.org/10.1016/j.saa.2010.02.034

    Article  CAS  Google Scholar 

  51. Boulmokh Y, Belguidoum K, Meddour F, Amira-Guebailia H (2021) Investigation of antioxidant activity of epigallocatechin gallate and epicatechin as compared to resveratrol and ascorbic acid: experimental and theoretical insights. Struct Chem 32:1907–1923. https://doi.org/10.1007/s11224-021-01763-5

    Article  CAS  Google Scholar 

  52. Macit M, Tanak H, Orbay M, Özdemir N (2017) Synthesis, crystal structure, spectroscopic characterization and DFT studies of bis[(1Z,2E)-N-(2,6-diethylphenyl)-N’-hydroxy-2-(hydroxyimino)acetimidamidato]nickel(II). Inorganica Chimica Acta 459:36–44. https://doi.org/10.1016/j.ica.2017.01.013

    Article  CAS  Google Scholar 

  53. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comp Chem 20:129–154. https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1%3c129::AID-JCC13%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  54. Golding RM, Ahn S (1981) Calculation of dipole moments for transition met complexes. Bull Korean Chem Soc 2:48–55

    CAS  Google Scholar 

  55. Hübschle CB, van Smaalen S (2017) The electrostatic potential of dynamic charge densities. J Appl Crystallogr 50:1627–1636. https://doi.org/10.1107/S1600576717013802

    Article  PubMed  PubMed Central  Google Scholar 

  56. Balachandran V, Karthick T, Perumal S, Nataraj A (2013) Comparative theoretical studies on natural atomic orbitals, natural bond orbitals and simulated UV-visible spectra of N-(methyl)phthalimide and N-(2 bromoethyl)phthalimide. IJPAP 51:178–184

    CAS  Google Scholar 

  57. Midoune A, Messaoudi A (2021) DFT/TDDFT studies of the structural, electronic and NBO properties of some complexes with the tetrathiafulvalene-1, 3-benzothiazole ligand. Inorganica Chim Acta 516:120151. https://doi.org/10.1016/j.ica.2020.120151

    Article  CAS  Google Scholar 

  58. Mason WR, Gray HB (1968) Electronic structures of square-planar complexes. J Am Chem Soc 90:5721–5729. https://doi.org/10.1021/JA01023A012

    Article  CAS  Google Scholar 

  59. Börgel J, Campbell MG, Ritter T (2016) Transition metal d-orbital splitting diagrams: an updated educational resource for square planar transition metal complexes. J Chem Educ 1(93):118–121. https://doi.org/10.1021/acs.jchemed.5b00542

    Article  CAS  Google Scholar 

  60. Takashiro A, Seiko K, Akio U (2001) Assignment of d-d transitions of square planar [CuIIN4] complexes containing imidate and amine ligands by means of polarized crystal spectra. Bull Chem Soc Jpn. 74:851–860

    Article  Google Scholar 

  61. Banciu C, Lepädatu CI (1975) Electronic transitions in square-planar complexes with Ni(d8)-N(sp2) bonds. Z Phys Chem (NF) 97:197–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habiba Amira-Guebailia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belguidoum, K., Boulmokh, Y., Hamamdia, F.Z. et al. Tetradentate square-planar acetylumbelliferone–nickel (II) complex formation: a DFT and TD-DFT study. Theor Chem Acc 141, 48 (2022). https://doi.org/10.1007/s00214-022-02903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02903-8

Keywords

Navigation