Log in

Photodissociation dynamics of the \(\hbox {D}_{2}^{+}\) ion initiated by several different laser pulses

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Nonadiabatic effects are ubiquitous in physics and chemistry. They are associated with conical intersections (CIs) which are degeneracies between electronic states of polyatomic molecules. Recently, it has been recognized that so-called light-induced conical intersections (LICIs) can be formed both by standing or by running laser waves even in diatomics. Owing to the strong nonadiabatic couplings, the appearance of such laser-induced conical intersections (LICIs) may significantly change the dynamical properties of a molecular system. In the present paper we investigate the photodissociation dynamics of \(\hbox {D}_{2}^{+}\) ion initiating the nuclear dynamics from the superposition of all the vibrational states produced by ionizing \(\hbox {D}_{2}\). The kinetic energy release and the angular distribution of the photodissociation products are computed with and without LICI for the several different values of the laser parameters. We performed both one- and two-dimensional calculations, as well. In the first scheme the molecules were rotationally frozen, whereas in the latter one, the molecular rotation is included as a full additional dynamic variable. The results obtained undoubtedly demonstrate that the impact of the LICI on the dissociation dynamics of the \(\hbox {D}_{2}^{+}\) molecule strongly depend upon the laser parameters applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Born M, Oppenheimer JR (1927) Ann Phys 84:457

    Article  CAS  Google Scholar 

  2. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59–246

    Google Scholar 

  3. Baer M (2002) Phys Rep 358:75–142

    Article  CAS  Google Scholar 

  4. Worth GA, Cederbaum LS (2004) Annu Rev Phys Chem 55:127–158

    Article  CAS  Google Scholar 

  5. Domcke W, Yarkony DR, Köppel H (2004) Conical intersections: electronic structure, dynamics and spectroscopy. World Scientific, Singapore

    Google Scholar 

  6. Baer M (2006) Beyond born oppenheimer: electronic non-adiabatic coupling terms and conical intersections. Wiley, New York

    Book  Google Scholar 

  7. Matsika S (2007) Rev Comput Chem 23:83–124

    CAS  Google Scholar 

  8. Althorpe SC, Stecher T, Bouakline FJ (2008) Chem Phys 129:214117

    Google Scholar 

  9. Bouakline F (2014) Chem Phys 442:31–40

    Article  CAS  Google Scholar 

  10. Truhlar DG, Mead A (2003) Phys Rev A 68:032501

    Article  Google Scholar 

  11. Tishchenko O, Li R, Truhlar DG (2010) PNAS 107:19139–19145

    Article  CAS  Google Scholar 

  12. Moiseyev N, Sindelka M, Cederbaum LS (2008) J Phys B 41:221001–221006

    Article  Google Scholar 

  13. Sindelka M, Moiseyev N, Cederbaum LS (2011) J Phys B 44:045603–045606

    Article  Google Scholar 

  14. Halász GJ, Vibók Á, Sindelka M, Moiseyev N, Cederbaum LS (2011) J Phys B 44:175102–175112

    Article  Google Scholar 

  15. Halász GJ, Sindelka M, Moiseyev N, Cederbaum LS, Vibók Á (2012) J Phys Chem A 116:2636–2643

    Article  Google Scholar 

  16. Halász GJ, Vibók Á, Sindelka M, Cederbaum LS, Moiseyev N (2012) Chem Phys 399:146–150

    Article  Google Scholar 

  17. Halász GJ, Vibók Á, Moiseyev N, Cederbaum LS (2012) J Phys B 45:135101–135110

    Article  Google Scholar 

  18. Halász GJ, Vibók Á, Meyer HD, Cederbaum LS (2013) J Phys Chem A 117:8528–8535

    Article  Google Scholar 

  19. Halász GJ, Vibók Á, Moiseyev N, Cederbaum LS (2013) Phys Rev A 88:043413-6

    Google Scholar 

  20. Halász GJ, Csehi A, Vibók Á, Cederbaum LS (2014) J Phys Chem A 118:11908–11915

    Article  Google Scholar 

  21. Halász GJ, Vibók Á, Cederbaum LS (2015) J Phys Chem Lett 6:348–354

    Article  Google Scholar 

  22. Cederbaum LS, Chiang YC, Demekhin PV, Moiseyev N (2011) Phys Rev Lett 106:123001–123005

    Article  Google Scholar 

  23. Demekhin PV, Chiang YC, Cederbaum LS (2011) Phys Rev A 84:033417

    Article  Google Scholar 

  24. Demekhin PV, Cederbaum LS (2013) J Phys B 46:164008

    Article  Google Scholar 

  25. Estrada H, Cederbaum LS, Domcke W (1986) J Chem Phys 84:152

    Article  CAS  Google Scholar 

  26. Feuerbacher S, Sommerfeld T, Cederbaum LS (2004) J Chem Phys 120:3201

    Article  CAS  Google Scholar 

  27. Demekhin PV, Cederbaum LS (2013) J Chem Phys 139:154314–154315

    Article  Google Scholar 

  28. Natan A, Ware MR, Bucksbaum PH (2015) Book of ultrafast phenomena XIX Springer proceedings in physics, vol 162, pp 122–125

  29. Kim J, Tao H, White JL, Petrović VS, Martinez TJ, Bucksbaum PH (2012) J Phys Chem A 116:2758–2763

    Article  CAS  Google Scholar 

  30. Kim J, Tao H, Martinez TJ, Bucksbaum PH (2015) J Phys B 48:164003–164010

    Article  Google Scholar 

  31. Corrales ME, González-Vázquez J, Balerdi G, Solá IR, de Nalda R, Bañares L (2014) Nat Chem 6:785–790

    Article  CAS  Google Scholar 

  32. Sola IR, González-Vázquez J, de Nalda R, Bañares L (2015) Phys Chem Chem Phys 17:13183–13200

    Article  CAS  Google Scholar 

  33. Zavriyev A, Bucksbaum PH, Muller HG, Schumacher DV (1990) Phys Rev A 42:5500–5513

    Article  CAS  Google Scholar 

  34. Bandrauk AD, Sink M (1978) Chem Phys Lett 57:569–572

    Article  CAS  Google Scholar 

  35. Bandrauk AD, Sink M (1981) J Chem Phys 74:1110–1117

    Article  CAS  Google Scholar 

  36. Aubanel EE, Gauthier JM, Bandrauk AD (1993) Phys Rev A 48:2145–2152

    Article  CAS  Google Scholar 

  37. Charron E, Giusti-Suzor A, Mies FH (1994) Phys Rev A 49:R641–R644

    Article  CAS  Google Scholar 

  38. Chelkowski S, Zuo T, Atabek O, Bandrauk AD (1995) Phys Rev A 52:2977–2983

    Article  CAS  Google Scholar 

  39. Giusti-Suzor A, Mies FH, DiMauro LF, Charron E, Yang B (1995) J Phys B 28:309–339

    Article  CAS  Google Scholar 

  40. Numico R, Keller A, Atabek O (1995) Phys Rev A 52:1298–1309

    Article  CAS  Google Scholar 

  41. Sandig K, Figger H, Hansch TV (2000) Phys Rev Lett 85:4876–4879

    Article  CAS  Google Scholar 

  42. Serov VN, Keller A, Atabek O, Billy N (2003) Phys Rev A 68:053401-16

    Article  Google Scholar 

  43. Posthumus JH (2004) Rep Prog Phys 67:623–665

    Article  CAS  Google Scholar 

  44. Serov VN, Keller A, Atabek O, Figger H, Pavidic D (2005) Phys Rev A 72:033413-21

    Article  Google Scholar 

  45. Uhlmann M, Kunert T, Schmidt R (2005) Phys Rev A 72:045402-5

    Article  Google Scholar 

  46. Wang PQ et al (2006) Phys Rev A 74:043411-21

    Google Scholar 

  47. Anis F, Esry BD (2008) Phys Rev A 77:033416-11

    Article  Google Scholar 

  48. Anis F, Cackowski T, Esry BD (2009) J Phys B Fast Track Com 42:091001-6

    Google Scholar 

  49. Hua JJ, Esry BD (2009) Phys Rev A 80:013413-19

    Article  Google Scholar 

  50. Adhikari S et al (2009) J Phys Chem A 113:7331–7337

    Google Scholar 

  51. Paul AK, Adhikari S, Baer M (2010) Baer R 81:013412-10

    Google Scholar 

  52. Thumm U, Niederhausen T, Feuerstein B (2008) Phys Rev A 77:063401-12

    Article  Google Scholar 

  53. Fischer M et al (2011) New J Phys 13:053019-14

    Article  Google Scholar 

  54. Fischer M, Lorenz U, Schmidt B, Schmidt R (2011) Phys Rev A 84:033422-5

    Google Scholar 

  55. McKenna J, Anis F, Sayler AM, Gaire B, Johnson NG, Parke E, Carnes KD, Esry BD, Ben-Itzhak I (2012) Phys Rev A 85:023405-15

    Article  Google Scholar 

  56. He HX, Lu RF, Zhang PY, Han KL, He GZ (2012) J Chem Phys 136:024311-6

    Google Scholar 

  57. Furukawa Y, Nabekawa Y, Okino T, Eilanlou AA, Takahashi EJ, Lan P, Ishikawa KL, Sato T, Yamanouchi K, Midorikawa K (2012) Opt Lett 37:2922–2924

    Article  CAS  Google Scholar 

  58. Bunkin FV, Tugov II (1973) Phys Rev A 8:601–612

    Article  CAS  Google Scholar 

  59. Chu SI, Laughlin C, Datta K (1983) Chem Phys Lett 98:476–481

    Article  CAS  Google Scholar 

  60. Meyer HD, Manthe U, Cederbaum LS (1990) Chem Phys Lett 165:73–78

    Article  CAS  Google Scholar 

  61. Manthe U, Meyer HD, Cederbaum LS (1992) J Chem Phys 97:3199–3213

    Article  CAS  Google Scholar 

  62. Beck MH, Jäckle A, Worth GA, Meyer HD (2000) Phys Rep 324:1–105

    Article  CAS  Google Scholar 

  63. Worth GA et al. The MCTDH package, version 8.2; University of Heidelberg: Heidelberg, Germany, 2000. H. D. Meyer et al. The MCTDH package, versions 8.3 and 8.4; University of Heidelberg, Germany, 2002 and 2007. http://mctdh.uni-hd.de/

  64. Meyer HD, Gatti F, Worth GA (2009) Multidimensional quantum dynamics: MCTDH theory and applications. Wiley, Weinheim

    Book  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the Deutsche Forschungsgemeinschaft (Project ID CE10/50-2). Á.V. acknowledges the OTKA Grant No. NN103251. The authors thank Lorenz Cederbaum for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Vibók.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halász, G.J., Csehi, A. & Vibók, Á. Photodissociation dynamics of the \(\hbox {D}_{2}^{+}\) ion initiated by several different laser pulses. Theor Chem Acc 134, 128 (2015). https://doi.org/10.1007/s00214-015-1745-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1745-0

Keywords

Navigation